Variational methods of data assimilation and inverse problems for studying the atmosphere, ocean, and environment
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 421-434.

Voir la notice de l'article provenant de la source Math-Net.Ru

Methods for the combined use of mathematical models and observational data for studying and forecasting the evolution of the natural processes in the atmosphere, ocean and environment are presented. Variational principles for estimation of the functionals defined on a set of the functions of state, parameters and sources of the models of processes are the theoretical background. Mathematical models with allowance for uncertainties are considered as constraints to the class of functions. The main attention is paid to methods of successive data assimilation and to the inverse problems.
@article{SJVM_2009_12_4_a5,
     author = {V. V. Penenko},
     title = {Variational methods of data assimilation and inverse problems for studying the atmosphere, ocean, and environment},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {421--434},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a5/}
}
TY  - JOUR
AU  - V. V. Penenko
TI  - Variational methods of data assimilation and inverse problems for studying the atmosphere, ocean, and environment
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 421
EP  - 434
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a5/
LA  - ru
ID  - SJVM_2009_12_4_a5
ER  - 
%0 Journal Article
%A V. V. Penenko
%T Variational methods of data assimilation and inverse problems for studying the atmosphere, ocean, and environment
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 421-434
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a5/
%G ru
%F SJVM_2009_12_4_a5
V. V. Penenko. Variational methods of data assimilation and inverse problems for studying the atmosphere, ocean, and environment. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 421-434. http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a5/

[1] Braison A., Kho Yu-Shi, Prikladnaya teoriya optimalnogo upravleniya, Mir, M., 1972

[2] Bensusan A., Lions Zh.-L., Temam R., “Metody dekompozitsii, detsentralizatsii, koordinatsii i ikh prilozheniya”, Metody vychislitelnoi matematiki, Nauka, Novosibirsk, 1975, 144–271

[3] Veinberg A., Vigner E., Fizicheskaya teoriya yadernykh reaktorov, Izd-vo inostrannoi literatury, M., 1961

[4] Kollatts L., Funktsionalnyi analiz i vychislitelnaya matematika, Mir, M., 1969

[5] Marchuk G. I., Metody rascheta yadernykh reaktorov, Gosatomizdat, M., 1961

[6] Marchuk G. I., Chislennoe reshenie zadach dinamiki atmosfery i okeana, Gidrometeoizdat, L., 1974

[7] Marchuk G. I., Sopryazhennye uravneniya i analiz slozhnykh sistem, Nauka, M., 1992 | MR | Zbl

[8] Penenko A. V., “Nekotorye teoreticheskie i prikladnye voprosy posledovatelnogo variatsionnogo usvoeniya dannykh”, Vychislitelnye tekhnologii (Novosibirsk), 11, Spetsialnyi vypusk, chast 2 (2006), 35–40

[9] Penenko V. V., “Vychislitelnye aspekty modelirovaniya dinamiki atmosfernykh protsessov i otsenki vliyaniya razlichnykh faktorov na dinamiku atmosfery”, Nekotorye problemy vychislitelnoi i prikladnoi matematiki, Nauka, Novosibirsk, 1975, 61–76

[10] Penenko V. V., Metody chislennogo modelirovaniya atmosfernykh protsessov, Gidrometeoizdat, L., 1981 | MR

[11] Penenko V. V., Sistemnaya organizatsiya matematicheskikh modelei dlya zadach fiziki atmosfery, okeana i okhrany okruzhayuschei sredy, Preprint No 619, VTs SO RAN, Novosibirsk, 1985 | MR

[12] Penenko V. V., “Variatsionnye printsipy i optimizatsiya vo vzaimosvyazannykh zadachakh ekologii i klimata”, Tr. Mezhdunarodnoi konf. Vychislitelnaya matematika i matematicheskoe modelirovanie, Tom I, ed. V. P. Dymnikov, IVM RAN, M., 2000, 135–148

[13] Penenko V. V., “Variatsionnoe usvoenie dannykh v realnom vremeni”, Vychislitelnye tekhnologii, 10, Spetsialnyi vypusk, chast 1 (2005), 9–20 | Zbl

[14] Penenko V. V., Aloyan A. E., Modeli i metody dlya zadach okhrany okruzhayuschei sredy, Nauka, Novosibirsk, 1985 | MR

[15] Penenko V. V., Obraztsov N. N., “Variatsionnyi metod soglasovaniya polei meteorologicheskikh elementov”, Meteorologiya i gidrologiya, 1976, no. 11, 3–16

[16] Samarskii A. A., Vabischevich P. N., Additivnye skhemy dlya zadach matematicheskoi fiziki, Nauka, M., 2001 | Zbl

[17] Sea Zh., Optimizatsiya. Teoriya i algoritmy, Mir, M., 1973

[18] Shvarts L., Analiz, Mir, M., 1972

[19] Cacuci D. G., “Sensitivity theory for nonlinear system. I. Nonlinear functional analysis approach”, J. Math. Phys., 22 (1981), 2794–2802 | DOI | MR

[20] Cacuci D. G., “Sensitivity theory for nonlinear system. II. Extensions to additional classes of responses”, J. Math. Phys., 22 (1981), 2803–2812 | DOI | MR

[21] Courtier P., Th'epaut J. N., Hollingsworth A., “A strategy for operational implementation of 4D-Var, using an incremental approach”, Q. J. R. Meteor. Soc., 120 (1994), 1367–1387 | DOI

[22] Daescu D., Carmichael G., “An adjoint sensitivity method for the adaptive location of the observations in air quality modeling”, J. Atmos. Sci., 60:1 (2003), 434–449 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[23] Daley R. A., Atmospheric data assimilation, Cambridge University Press, New York, 1991

[24] Le Dimet F., Talagrand O., “Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects”, Tellus, 38A (1986), 97–110

[25] Elbern H., Strunk A., Schmidt H., Talagrand O., “Emission rate and chemical state estimation by 4-dimensional variational inversion”, Atmos. Chem. Phys., 7 (2007), 3749–3769

[26] Evensen G., Fario N., “Solving for the generalized inverse of the Lorenz model”, J. Meteor. Soc. Japan, 75 (1997), 229–243

[27] Kalman R. E., “A new approach to linear filtering and prediction problems”, Trans. ASME J. Basic Eng., 82 (1960), 34–35

[28] Kalman R. E., Bucy R. S., “New results in linear filtering and prediction theory”, Trans. ASME Ser. D J. Basic Eng., 83 (1961), 95–107 | MR

[29] Lorenc A. C., “Analysis methods for numerical weather prediction”, Q. J. R. Meteorol. Soc., 112 (1986), 1177–1194 | DOI

[30] Lorenc A. C., “Optimal nonlinear objective analysis”, Q. J. R. Meteorol. Soc., 114 (1988), 205–240 | DOI

[31] Penenko V. V., “Some aspects of mathematical modeling using the models together with observational data”, Bulletin of the NCC. Series: Num. Model. in Atmosph., 1996, no. 4, 32–51

[32] Penenko V. V., Tsvetova E. A., Variational fast data assimilation algorithms, Research Activities in Atmospheric and Oceanic Modeling, WGNE Blue Book Web Site , 2002 http://www.cmc.ec.gc.ca/rpn/wgne 01-48

[33] Penenko V. V., Tsvetova E. A., “Orthogonal decomposition methods for inclusion of climatic data into environmental studies”, Ecol. Modelling, 217 (2008), 279–291 | DOI

[34] Penenko V. V., Tsvetova E. A., “Discrete-analytical methods for the implementation of variational principles in environmental applications”, J. of Computational and Applied Mathematics, 226 (2009), 319–330 | DOI | MR | Zbl

[35] Sasaki I., “An objective analysis based on variational method”, J. Meteor. Soc. Japan, 36:3 (1958), 29–30

[36] Talagrand O., Courtier P., “Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory”, Quart. J. Roy. Meteor. Soc., 113 (1987), 1311–1328 | DOI

[37] Trevisan A., Uboldi F., “Assimilation of standard and targeted observations within the unstable subspace of the observation-analysis-forecast cycle system”, J. Atmos. Sci., 65:1 (2004), 103–113 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI