On using the Lagrange coefficients for a~posteriori error estimation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 375-388

Voir la notice de l'article provenant de la source Math-Net.Ru

A posteriori error estimation of the goal functional is considered using a differential presentation of a finite difference scheme and adjoint equations. The local approximation error is presented as a Tailor series remainder in the Lagrange form. The field of the Lagrange coefficients is determined by a high accuracy finite difference stencil affecting results of computation. The feasibility of using the Lagrange coefficients for the refining solution and estimation of its uncertainty are considered.
@article{SJVM_2009_12_4_a1,
     author = {A. K. Alekseev and I. N. Makhnev},
     title = {On using the {Lagrange} coefficients for a~posteriori error estimation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {375--388},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a1/}
}
TY  - JOUR
AU  - A. K. Alekseev
AU  - I. N. Makhnev
TI  - On using the Lagrange coefficients for a~posteriori error estimation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 375
EP  - 388
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a1/
LA  - ru
ID  - SJVM_2009_12_4_a1
ER  - 
%0 Journal Article
%A A. K. Alekseev
%A I. N. Makhnev
%T On using the Lagrange coefficients for a~posteriori error estimation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 375-388
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a1/
%G ru
%F SJVM_2009_12_4_a1
A. K. Alekseev; I. N. Makhnev. On using the Lagrange coefficients for a~posteriori error estimation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 375-388. http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a1/