On using the Lagrange coefficients for a~posteriori error estimation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 375-388
Voir la notice de l'article provenant de la source Math-Net.Ru
A posteriori error estimation of the goal functional is considered using a differential presentation of a finite difference scheme and adjoint equations. The local approximation error is presented as a Tailor series remainder in the Lagrange form. The field of the Lagrange coefficients is determined by a high accuracy finite difference stencil affecting results of computation. The feasibility of using the Lagrange coefficients for the refining solution and estimation of its uncertainty are considered.
@article{SJVM_2009_12_4_a1,
author = {A. K. Alekseev and I. N. Makhnev},
title = {On using the {Lagrange} coefficients for a~posteriori error estimation},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {375--388},
publisher = {mathdoc},
volume = {12},
number = {4},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a1/}
}
TY - JOUR AU - A. K. Alekseev AU - I. N. Makhnev TI - On using the Lagrange coefficients for a~posteriori error estimation JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2009 SP - 375 EP - 388 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a1/ LA - ru ID - SJVM_2009_12_4_a1 ER -
A. K. Alekseev; I. N. Makhnev. On using the Lagrange coefficients for a~posteriori error estimation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 375-388. http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a1/