On using the Lagrange coefficients for a~posteriori error estimation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 375-388.

Voir la notice de l'article provenant de la source Math-Net.Ru

A posteriori error estimation of the goal functional is considered using a differential presentation of a finite difference scheme and adjoint equations. The local approximation error is presented as a Tailor series remainder in the Lagrange form. The field of the Lagrange coefficients is determined by a high accuracy finite difference stencil affecting results of computation. The feasibility of using the Lagrange coefficients for the refining solution and estimation of its uncertainty are considered.
@article{SJVM_2009_12_4_a1,
     author = {A. K. Alekseev and I. N. Makhnev},
     title = {On using the {Lagrange} coefficients for a~posteriori error estimation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {375--388},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a1/}
}
TY  - JOUR
AU  - A. K. Alekseev
AU  - I. N. Makhnev
TI  - On using the Lagrange coefficients for a~posteriori error estimation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 375
EP  - 388
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a1/
LA  - ru
ID  - SJVM_2009_12_4_a1
ER  - 
%0 Journal Article
%A A. K. Alekseev
%A I. N. Makhnev
%T On using the Lagrange coefficients for a~posteriori error estimation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 375-388
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a1/
%G ru
%F SJVM_2009_12_4_a1
A. K. Alekseev; I. N. Makhnev. On using the Lagrange coefficients for a~posteriori error estimation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 375-388. http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a1/

[1] Repin S. I., Frolov M. E., “Ob aposteriornykh otsenkakh tochnosti priblizhennykh reshenii kraevykh zadach dlya uravnenii ellipticheskogo tipa”, ZhVM, 42:12 (2002), 1774–1787 | MR | Zbl

[2] Giles M. B., Suli E., “Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality”, Acta Numerica, 11 (2002), 145–206 | DOI | MR

[3] Oden J. T., Prudhomme S., “Goal-Oriented Error Estimation and Adaptivity for the Finite Element Method”, Computers and Mathematics with Applic., 41 (2001), 735–756 | DOI | MR | Zbl

[4] Alekseev A. K., “Kontrol pogreshnosti konechno-raznostnogo resheniya uravneniya teploprovodnosti s pomoschyu sopryazhennogo uravneniya”, Inzhenerno-fizicheskii zhurnal, 77:1 (2004), 145–151

[5] Alekseev A. K., “Aposteriornaya otsenka pogreshnosti konechno-raznostnogo resheniya s pomoschyu sopryazhennykh uravnenii i differentsialnogo predstavleniya”, ZhVM, 45:7 (2005), 1213–1225 | MR | Zbl

[6] Alekseev A. K., Navon I. M., “On a-posteriori pointwise error estimation using adjoint temperature and Lagrange remainder”, Computer Methods in Appl. Mech. and Eng., 194:18–20 (2005), 2211–2228 | DOI | MR | Zbl

[7] Shokin Yu. I., Yanenko N. N., Metod differentsialnogo priblizheniya, Nauka, Novosibirsk, 1985 | MR | Zbl

[8] Marchuk G. I., Sopryazhennye uravneniya i analiz slozhnykh sistem, Nauka, M., 1992 | MR | Zbl

[9] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl

[10] Lykov A. V., Teoriya teploprovodnosti, Vysshaya shkola, M., 1967 | Zbl

[11] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Vysshaya shkola, M., 1987

[12] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[13] Alekseev A. K., Navon I. M., “Adjoint Correction and Bounding of Error Using Lagrange Form of Truncation Term”, Computers and Mathematics with Applications, 50:8–9 (2005), 1311–1332 | DOI | MR | Zbl