Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2009_12_4_a1, author = {A. K. Alekseev and I. N. Makhnev}, title = {On using the {Lagrange} coefficients for a~posteriori error estimation}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {375--388}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a1/} }
TY - JOUR AU - A. K. Alekseev AU - I. N. Makhnev TI - On using the Lagrange coefficients for a~posteriori error estimation JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2009 SP - 375 EP - 388 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a1/ LA - ru ID - SJVM_2009_12_4_a1 ER -
A. K. Alekseev; I. N. Makhnev. On using the Lagrange coefficients for a~posteriori error estimation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 375-388. http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a1/
[1] Repin S. I., Frolov M. E., “Ob aposteriornykh otsenkakh tochnosti priblizhennykh reshenii kraevykh zadach dlya uravnenii ellipticheskogo tipa”, ZhVM, 42:12 (2002), 1774–1787 | MR | Zbl
[2] Giles M. B., Suli E., “Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality”, Acta Numerica, 11 (2002), 145–206 | DOI | MR
[3] Oden J. T., Prudhomme S., “Goal-Oriented Error Estimation and Adaptivity for the Finite Element Method”, Computers and Mathematics with Applic., 41 (2001), 735–756 | DOI | MR | Zbl
[4] Alekseev A. K., “Kontrol pogreshnosti konechno-raznostnogo resheniya uravneniya teploprovodnosti s pomoschyu sopryazhennogo uravneniya”, Inzhenerno-fizicheskii zhurnal, 77:1 (2004), 145–151
[5] Alekseev A. K., “Aposteriornaya otsenka pogreshnosti konechno-raznostnogo resheniya s pomoschyu sopryazhennykh uravnenii i differentsialnogo predstavleniya”, ZhVM, 45:7 (2005), 1213–1225 | MR | Zbl
[6] Alekseev A. K., Navon I. M., “On a-posteriori pointwise error estimation using adjoint temperature and Lagrange remainder”, Computer Methods in Appl. Mech. and Eng., 194:18–20 (2005), 2211–2228 | DOI | MR | Zbl
[7] Shokin Yu. I., Yanenko N. N., Metod differentsialnogo priblizheniya, Nauka, Novosibirsk, 1985 | MR | Zbl
[8] Marchuk G. I., Sopryazhennye uravneniya i analiz slozhnykh sistem, Nauka, M., 1992 | MR | Zbl
[9] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl
[10] Lykov A. V., Teoriya teploprovodnosti, Vysshaya shkola, M., 1967 | Zbl
[11] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Vysshaya shkola, M., 1987
[12] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967
[13] Alekseev A. K., Navon I. M., “Adjoint Correction and Bounding of Error Using Lagrange Form of Truncation Term”, Computers and Mathematics with Applications, 50:8–9 (2005), 1311–1332 | DOI | MR | Zbl