On comparison between Apostolatos--Kulisch and Mayer--Warnke theorems in interval analysis
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 3, pp. 351-359.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with comparing Apostolatos–Kulisch theorem and Mayer–Warnke theorem that form a basis of the so-called formal (aka algebraic) approach to the outer interval estimation of the solution sets for interval linear systems of equations. We show that despite a greater generality of Mayer–Warnke theorem, it extends the applicability scope of the formal approach to a very small extent, and a practical significance of such an extension is inessential.
@article{SJVM_2009_12_3_a9,
     author = {S. P. Shary},
     title = {On comparison between {Apostolatos--Kulisch} and {Mayer--Warnke} theorems in interval analysis},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {351--359},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_3_a9/}
}
TY  - JOUR
AU  - S. P. Shary
TI  - On comparison between Apostolatos--Kulisch and Mayer--Warnke theorems in interval analysis
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 351
EP  - 359
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_3_a9/
LA  - ru
ID  - SJVM_2009_12_3_a9
ER  - 
%0 Journal Article
%A S. P. Shary
%T On comparison between Apostolatos--Kulisch and Mayer--Warnke theorems in interval analysis
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 351-359
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_3_a9/
%G ru
%F SJVM_2009_12_3_a9
S. P. Shary. On comparison between Apostolatos--Kulisch and Mayer--Warnke theorems in interval analysis. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 3, pp. 351-359. http://geodesic.mathdoc.fr/item/SJVM_2009_12_3_a9/

[1] Alefeld G., Khertsberger Yu., Vvedenie v intervalnye vychisleniya, Mir, M., 1987 | MR

[2] Kalmykov S. A., Shokin Yu. I., Yuldashev Z. Kh., Metody intervalnogo analiza, Nauka, Novosibirsk, 1986 | MR | Zbl

[3] Sharyi S. P., “Algebraicheskii podkhod k analizu lineinykh staticheskikh sistem s intervalnoi neopredelennostyu”, Izvestiya RAN. Teoriya i sistemy upravleniya, 1997, no. 3, 51–61

[4] Sharyi S. P., “Vneshnee otsenivanie obobschennykh mnozhestv reshenii intervalnykh lineinykh sistem”, Vychislitelnye tekhnologii, 4:4 (1999), 82–110 | MR

[5] Shary S. P., “A new technique in systems analysis under interval uncertainty and ambiguity”, Reliable Computing, 8:5 (2002), 321–418 ; http://www.nsc.ru/interval/shary/Papers/ANewTech.pdf/ | DOI | MR | Zbl

[6] Berti S., “The solution of an interval equation”, Mathematica, 11(34):2 (1969), 189–194 | MR | Zbl

[7] Ratschek H., Sauer W., “Linear interval equations”, Computing, 28:2 (1982), 105–115 | DOI | MR | Zbl

[8] Zyuzin V. S., “Ob odnom sposobe otyskaniya dvustoronnikh intervalnykh priblizhenii resheniya sistemy lineinykh intervalnykh uravnenii”, Differentsialnye uravneniya i teoriya funktsii, Izd-vo Saratovskogo universiteta, Saratov, 1987, 28–32

[9] Sharyi S. P., “Lineinye staticheskie sistemy s intervalnoi neopredelennostyu: effektivnye algoritmy dlya resheniya zadach upravleniya i stabilizatsii”, Vychislitelnye tekhnologii, Sb. nauchn. tr. IVT SO RAN, 4, no. 13, Novosibirsk, 1995, 64–80

[10] Kupriyanova L., “Inner estimation of the united solution set of interval linear algebraic system”, Reliable Computing, 1:1 (1995), 15–31 | DOI | MR | Zbl

[11] Shary S. P., “Linear static systems under interval uncertainty: Algorithms to solve control and stabilization problems”, J. of Reliable Computing, Suppl. (1995), 181–184, Extended Abstracts of APIC'95, International Workshop on Applications of Interval Computations. Texas: El Paso, 1995

[12] Apostolatos N., Kulisch U., “Grundzüge einer Intervallrechnung für Matrizen und einige Anwendungen”, Electron. Rechenanl., 10 (1968), 73–83 | Zbl

[13] Kollatts L., Funktsionalnyi analiz i vychislitelnaya matematika, Mir, M., 1969

[14] Sharyi S. P., “Algebraicheskii podkhod vo “vneshnei zadache” dlya intervalnykh lineinykh sistem”, Vychislitelnye tekhnologii, 3:2 (1998), 67–114 | MR

[15] Mayer G., Warnke I., “On the fixed points of the interval function $f([x])=[A][x]+[b]$”, Linear Algebra and its Applications, 363 (2003), 201–216 | DOI | MR | Zbl

[16] Neumaier A., Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[17] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[18] Berman A., Plemmons R. J., Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979 | MR | Zbl

[19] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966 | MR

[20] INTLAB – INTerval LABoratory, http://www.ti3.tu-harburg.de/rump/intlab/