Continuation of elastic waves in reverse time
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 3, pp. 341-350.

Voir la notice de l'article provenant de la source Math-Net.Ru

Methods based on the inverse continuation of the oscillation field have received a wide use in the processing of multi-channel seismic prospecting data. Physically, the idea of this approach is clear: a wave field observed on some surface is continued into the medium and backward in time. Mathematically, all continuation algorithms that are used are based on a scalar model of the wave equation describing sufficiently well the wave nature of oscillations of individual types, but not taking into account the vector nature of these oscillations. It is well known that a system of equations of the dynamic elasticity theory (Lame equations) is a more adequate model for the description of seismic oscillations. In this paper, continuation of the field of elastic oscillations in an inhomogeneous isotropic medium is considered.
@article{SJVM_2009_12_3_a8,
     author = {G. M. Tsybul'chik},
     title = {Continuation of elastic waves in reverse time},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {341--350},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_3_a8/}
}
TY  - JOUR
AU  - G. M. Tsybul'chik
TI  - Continuation of elastic waves in reverse time
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 341
EP  - 350
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_3_a8/
LA  - ru
ID  - SJVM_2009_12_3_a8
ER  - 
%0 Journal Article
%A G. M. Tsybul'chik
%T Continuation of elastic waves in reverse time
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 341-350
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_3_a8/
%G ru
%F SJVM_2009_12_3_a8
G. M. Tsybul'chik. Continuation of elastic waves in reverse time. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 3, pp. 341-350. http://geodesic.mathdoc.fr/item/SJVM_2009_12_3_a8/

[1] Petrashen G. I., “Osnovy matematicheskoi teorii rasprostraneniya uprugikh voln”, Voprosy dinamicheskoi teorii rasprostraneniya seismicheskikh voln, Sb. nauchn. trudov, 18, Nauka, L., 1978, 3–248

[2] Aki K., Richards P., Kolichestvennaya seismologiya, T. 1, 2, Mir, M., 1984

[3] Mors F., Feshbakh G., Metody teoreticheskoi fiziki, T. 1, 2, IL, M., 1958, 1960

[4] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl

[5] Tsibulchik G. M., “O formirovanii seismicheskogo izobrazheniya na osnove golograficheskogo printsipa”, Geologiya i geofizika, 1975, no. 11, 97–106

[6] Tsibulchik G. M., “Analiz resheniya kraevoi zadachi, modeliruyuschei protsess formirovaniya izobrazheniya v seismogolografii”, Geologiya i geofizika, 1975, no. 12, 22–31

[7] Krein S. G. (red.), Funktsionalnyi analiz, Seriya “SMB”, Fizmatgiz, M., 1972

[8] Babich V.M., “Metod Soboleva–Kirkhgofa v dinamike neodnorodnoi uprugoi sredy”, Vestnik LGU, 13:3 (1957), 146–160 | Zbl

[9] Babich V. M., “Fundamentalnye resheniya dinamicheskikh uravnenii teorii uprugosti dlya neodnorodnoi sredy”, Prikladnaya matematika i mekhanika, 25:1 (1961), 38–45 | MR | Zbl

[10] Kupradze V. D., Metody potentsiala v teorii uprugosti, Fizmatlit, M., 1963 | MR

[11] Novatskii V., Teoriya uprugosti, Mir, M., 1975 | MR

[12] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1971 | MR | Zbl

[13] Bleistein N., Cohen J., “Nonuniqueness in the inverse source problem in acoustics and electromagnetics”, J. of Mathematical Physics, 18:2 (1977), 194–201 | DOI | MR | Zbl

[14] Alekseev A. S., Tsibulchik G. M., “O svyazi obratnykh zadach teorii rasprostraneniya voln s zadachami vizualizatsii volnovykh polei”, DAN SSSR, 242:5 (1978), 1030–1033 | MR

[15] Bukhgeim A. L., Uravneniya Volterra i obratnye zadachi, Nauka, Sibirskoe otd-nie, Novosibirsk, 1983 | MR