Calculation formulas of linear geometrical spreading at ray tracing in a~3D block-inhomogeneous gradient medium
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 3, pp. 325-339.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, recurrent formulas, suitable for direct programming, to calculate a linear geometrical spreading of the central field of seismic rays in a 3D block-gradient medium needed for organizing shooting to area observation systems have been obtained. For recalculation formulas through the interface, a new representation using a special operator of nonorthogonal projection allowing an additive separation of terms depending only on the ray curvature, the boundary curvature, and the variable character of the velocities ratio along the boundary, has been found. Formulas for partial derivatives of the eikonal via linear and angular geometrical spreading are presented.
@article{SJVM_2009_12_3_a7,
     author = {V. A. Tsetsocho and A. V. Belonosova and A. S. Belonosov},
     title = {Calculation formulas of linear geometrical spreading at ray tracing in {a~3D} block-inhomogeneous gradient medium},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {325--339},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_3_a7/}
}
TY  - JOUR
AU  - V. A. Tsetsocho
AU  - A. V. Belonosova
AU  - A. S. Belonosov
TI  - Calculation formulas of linear geometrical spreading at ray tracing in a~3D block-inhomogeneous gradient medium
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 325
EP  - 339
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_3_a7/
LA  - ru
ID  - SJVM_2009_12_3_a7
ER  - 
%0 Journal Article
%A V. A. Tsetsocho
%A A. V. Belonosova
%A A. S. Belonosov
%T Calculation formulas of linear geometrical spreading at ray tracing in a~3D block-inhomogeneous gradient medium
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 325-339
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_3_a7/
%G ru
%F SJVM_2009_12_3_a7
V. A. Tsetsocho; A. V. Belonosova; A. S. Belonosov. Calculation formulas of linear geometrical spreading at ray tracing in a~3D block-inhomogeneous gradient medium. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 3, pp. 325-339. http://geodesic.mathdoc.fr/item/SJVM_2009_12_3_a7/

[1] Alekseev A. S., Gelchinskii B. Ya., “O luchevom metode vychisleniya polei voln v sluchae neodnorodnykh sred s krivolineinymi granitsami razdela”, Voprosy dinamicheskoi teorii rasprostraneniya seismicheskikh voln, 3, L., 1959, 107–160

[2] Belonosova A. V., Tadzhimukhomedova S. S., Alekseev A. S., “K raschetu godografov i geometricheskogo raskhozhdeniya luchei v neodnorodnykh sredakh”, Nekotorye metody i algoritmy interpretatsii geofizicheskikh dannykh, M., 1967, 124–136

[3] Popov M. M., “Ob odnom metode vychisleniya geometricheskogo raskhozhdeniya v neodnorodnoi srede, soderzhaschei granitsy razdela”, Dokl. AN SSSR, 237:5 (1977), 1059–1062

[4] Popov M. M., Psencik I., “Computation of ray amplitudes in inhomogeneous media with curved interfaces”, Studia Geoph. et Geod., 22 (1978), 248–258 | DOI

[5] Belonosova A. V., Tsetsokho V. A., “K voprosu vychisleniya geometricheskogo raskhozhdeniya v neodnorodnykh sredakh s gladkimi granitsami razdela”, Chislennye metody v interpretatsii geofizicheskikh nablyudenii, Novosibirsk, 1980, 14–24

[6] Belonosov A. S., Raschetnye formuly dlya luchei i luchevogo raskhozhdeniya v pryamougolnykh koordinatakh, Preprint VTs SO AN SSSR; No 396, Novosibirsk, 1982, 25 pp.

[7] Gelchinskii B. Ya., “Formula dlya geometricheskogo raskhozhdeniya”, Voprosy dinamicheskoi teorii rasprostraneniya seismicheskikh voln, 5, L., 1961, 47–53

[8] Goldin S. V., Chernyak B. C., Kurdyukova T. V., “Krivizna fronta seismicheskoi volny v sloisto-gradientnykh sredakh”, Geologiya i geofizika, 1978, no. 4, 118–124

[9] Goldin S. V., “K teorii luchevoi seismicheskoi tomografii. Chast I: Preobrazovanie Radona v polose i ego obraschenie”, Geologiya i geofizika, 37:5 (1996), 3–18

[10] Goldin S. V., “K teorii luchevoi seismicheskoi tomografii. Chast II: Obratnye zadachi dlya odnorodnykh sred”, Geologiya i geofizika, 37:9 (1996), 14–25

[11] Matveeva N. N., Antonova L. N., “Metod i programma rascheta kinematiki i dinamiki ob'emnykh voln v trekhmernykh neodnorodno-blokovykh sredakh”, Programmy dlya interpretatsii seismicheskikh nablyudenii, Vyp. 2, L., 1977, 173–221

[12] Tsetsokho V. A., Belonosov A. S., Polyarnoe i azimutalnoe geometricheskie raskhozhdeniya v dvumernykh sredakh s blokovo-postoyannym gradientom, Preprint VTs SO AN SSSR; No 878, Novosibirsk, 1990, 38 pp.

[13] Goldin S. V., Chernyakov V. G., “Metod Nyutona v reshenii pryamoi kinematicheskoi zadachi”, Geologiya i geofizika, 1998, no. 1, 102–114

[14] Gritsenko S. A., “Proizvodnye polya vremen”, Geologiya i geofizika, 1984, no. 4, 113–119

[15] Tsetsokho V. A., Vinogradov S. P., O ploschadnoi pristrelke pri luchevom trassirovanii v trekhmernoi sloisto-odnorodnoi srede, Preprint VTs SO RAN; No 1093, Novosibirsk, 1997, 22 pp.

[16] Vekua I. N., Osnovy tenzornogo analiza i teorii kovariantov, Nauka, M., 1978 | MR

[17] Torp Dzh., Nachalnye glavy differentsialnoi geometrii, Mir, M., 1982 | MR