A~numerical method of solving a~linear problem on a~minimum consumption of resources
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 3, pp. 247-267.

Voir la notice de l'article provenant de la source Math-Net.Ru

A simple algorithm of developing a quasi-optimal control relative to the consumption of resources is considered. The control is used as an initial approach to an iterative procedure of computing the optimal control. A system of linear algebraic equations is obtained that approximately relays the increments of the initial conditions of the adjoint system to the increments of the amplitudes of the quasi-optimal control over ultimate values. A local convergence of the computing process with a quadratic rate is proved, a radius of the local convergence being found. The condition of global convergence of the method is determined.
@article{SJVM_2009_12_3_a1,
     author = {V. M. Aleksandrov},
     title = {A~numerical method of solving a~linear problem on a~minimum consumption of resources},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {247--267},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_3_a1/}
}
TY  - JOUR
AU  - V. M. Aleksandrov
TI  - A~numerical method of solving a~linear problem on a~minimum consumption of resources
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 247
EP  - 267
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_3_a1/
LA  - ru
ID  - SJVM_2009_12_3_a1
ER  - 
%0 Journal Article
%A V. M. Aleksandrov
%T A~numerical method of solving a~linear problem on a~minimum consumption of resources
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 247-267
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_3_a1/
%G ru
%F SJVM_2009_12_3_a1
V. M. Aleksandrov. A~numerical method of solving a~linear problem on a~minimum consumption of resources. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 3, pp. 247-267. http://geodesic.mathdoc.fr/item/SJVM_2009_12_3_a1/

[1] Atans M., Falb P., Optimalnoe upravlenie, Mashinostroenie, M., 1968

[2] Flugge-Lotz I., Marbach H., “The optimal control of some attitude control systems for different performace criteria”, J. Basis Eng., 85 (1963), 165–176

[3] Balakrishnan A. V., Neustadt L. W., Computing Methods in Optimization Problems, Academic Press Ins., New York, 1964 | MR | Zbl

[4] Ragab M. Z., “Time fuel optimal deconpling control problem”, Adv. Model. Simul., 22:2 (1990), 1–16 | MR | Zbl

[5] Redmond J., Silverberg L., “Fuel consumption in optimal control”, J. Guid. Control Dyn., 15:2 (1992), 424–430 | DOI | MR | Zbl

[6] Singh T., “Fuel/time optimal control of the Benchmark problem”, J. Guid. Control Dyn., 18:6 (1995), 1225–1231 | DOI | Zbl

[7] Sachs G., Dinkelmann M., “Reduction of coolant fuel losses in hypersonic fight by optimal trajectory control”, J. Guid. Control Dyn., 19:6 (1996), 1278–1284 | DOI | Zbl

[8] Ivanov V. A., Kozhevnikov S. A., “Odna zadacha sinteza optimalnogo po “raskhodu topliva” upravleniya lineinymi ob'ektami vtorogo poryadka s proizvodnymi upravleniya”, Izvestiya RAN. Teoriya i sistemy upravleniya, 1996, no. 4, 77–83 | Zbl

[9] Dewell L. D., Speyer J. L., “Fuel-optimal periodic control and regulation in constrained hypersonic fight”, J. Guid. Control Dyn., 20:5 (1997), 923–932 | DOI | Zbl

[10] Liu S. W., Singh T., “Fuel/time optimal control of spacecraft maneuvers”, J. Guid. Control Dyn., 20:2 (1997), 394–397 | DOI | Zbl

[11] Shevchenko G. V., “Metod nakhozhdeniya optimalnogo po minimumu raskhoda resursov upravleniya dlya ob'ektov spetsialnogo vida”, Avtometriya, 42:2 (2006), 49–67 | MR

[12] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976 | Zbl

[13] Aleksandrov V. M., “Chislennyi metod resheniya zadachi lineinogo bystrodeistviya”, Zhurn. vychisl. matem. i mat. fiziki, 38:6 (1998), 918–931 | MR | Zbl

[14] Aleksandrov V. M., “Priblizhennoe reshenie lineinoi zadachi na minimum raskhoda resursov”, Zhurn. vychisl. matem. i mat. fiziki, 39:3 (1999), 418–430 | MR | Zbl