@article{SJVM_2009_12_2_a5,
author = {I. A. R. Mograbi},
title = {New implicit multi-step {quasi-Newton} methods},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {189--200},
year = {2009},
volume = {12},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a5/}
}
I. A. R. Mograbi. New implicit multi-step quasi-Newton methods. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 2, pp. 189-200. http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a5/
[1] Fletcher R., Practical Methods of Optimization, 2nd ed., John Wiley, New York, 1987 | MR
[2] Ford J. A., “Implicit updates in multistep quasi-Newton methods”, Comput. Math. Appl., 42 (2001), 1083–1091 | DOI | MR | Zbl
[3] Ford J. A., Moghrabi I. A., “Multi-step quasi-Newton methods for optimization”, J. Comput. Appl. Math., 50 (1994), 305–323 | DOI | MR | Zbl
[4] Ford J. A., Moghrabi I. A., “Alternative parameter choices for multi-step quasi-Newton methods”, Optimization Methods and Software, 2 (1993), 357–370 | DOI
[5] Ford J. A., Moghrabi I. A., “Alternating multi-step quasi-Newton methods for unconstrained optimization”, J. Comput. Appl. Math., 82 (1997), 105–116 | DOI | MR | Zbl
[6] Ford J. A., Moghrabi I. A., “On the use of alternation and recurrences in two-step quasi-Newton methods”, Comput. Math. Appl., 50:7 (2005), 1041–1050 | DOI | MR | Zbl
[7] Ford J. A., Tharmlikit S., “New implicit updates in multi-step quasi-Newton methods for unconstrained optimization”, J. Comput. Appl. Math., 152 (2003), 133–146 | DOI | MR | Zbl
[8] More J. J., Garbow B. S., and Hillstrom K. E., “Testing unconstrained optimization software”, ACM Trans. Math. Software, 7 (1981), 17–41 | DOI | MR | Zbl
[9] Shanno D. F., Phua K. H., “Matrix conditioning and nonlinear optimization”, Math. Prog., 14 (1978), 149–160 | DOI | MR | Zbl
[10] Wolfe P., “Methods for linear constraints”, Nonlinear Programming, ed. J. Abadie, North-Holland Publ. Co., Amsterdam, 1967, 99–131