New implicit multi-step quasi-Newton methods
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 2, pp. 189-200

Voir la notice de l'article provenant de la source Math-Net.Ru

Multi-step quasi-Newton methods for optimization use data from more than one previous step to construct the current Hessian approximation. These methods were introduced by Ford and Moughrabi in [3,4], where they showed how to construct such methods by means of interpolating curves. To produce a better parametrization of the interpolation, Ford [2] developed the idea of “implicit” methods. In this paper, we describe the derivation of new implicit updates which are similar to the methods $\mathbf{14}$ and $\mathbf{15}$ developed in [7]. The experimental results we present here show that both of the new methods produce better performance than the existing methods, particularly as the dimension of the test problem grows.
@article{SJVM_2009_12_2_a5,
     author = {I. A. R. Mograbi},
     title = {New implicit multi-step {quasi-Newton} methods},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {189--200},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a5/}
}
TY  - JOUR
AU  - I. A. R. Mograbi
TI  - New implicit multi-step quasi-Newton methods
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 189
EP  - 200
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a5/
LA  - ru
ID  - SJVM_2009_12_2_a5
ER  - 
%0 Journal Article
%A I. A. R. Mograbi
%T New implicit multi-step quasi-Newton methods
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 189-200
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a5/
%G ru
%F SJVM_2009_12_2_a5
I. A. R. Mograbi. New implicit multi-step quasi-Newton methods. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 2, pp. 189-200. http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a5/