New implicit multi-step quasi-Newton methods
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 2, pp. 189-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

Multi-step quasi-Newton methods for optimization use data from more than one previous step to construct the current Hessian approximation. These methods were introduced by Ford and Moughrabi in [3,4], where they showed how to construct such methods by means of interpolating curves. To produce a better parametrization of the interpolation, Ford [2] developed the idea of “implicit” methods. In this paper, we describe the derivation of new implicit updates which are similar to the methods $\mathbf{14}$ and $\mathbf{15}$ developed in [7]. The experimental results we present here show that both of the new methods produce better performance than the existing methods, particularly as the dimension of the test problem grows.
@article{SJVM_2009_12_2_a5,
     author = {I. A. R. Mograbi},
     title = {New implicit multi-step {quasi-Newton} methods},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {189--200},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a5/}
}
TY  - JOUR
AU  - I. A. R. Mograbi
TI  - New implicit multi-step quasi-Newton methods
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 189
EP  - 200
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a5/
LA  - ru
ID  - SJVM_2009_12_2_a5
ER  - 
%0 Journal Article
%A I. A. R. Mograbi
%T New implicit multi-step quasi-Newton methods
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 189-200
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a5/
%G ru
%F SJVM_2009_12_2_a5
I. A. R. Mograbi. New implicit multi-step quasi-Newton methods. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 2, pp. 189-200. http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a5/

[1] Fletcher R., Practical Methods of Optimization, 2nd ed., John Wiley, New York, 1987 | MR

[2] Ford J. A., “Implicit updates in multistep quasi-Newton methods”, Comput. Math. Appl., 42 (2001), 1083–1091 | DOI | MR | Zbl

[3] Ford J. A., Moghrabi I. A., “Multi-step quasi-Newton methods for optimization”, J. Comput. Appl. Math., 50 (1994), 305–323 | DOI | MR | Zbl

[4] Ford J. A., Moghrabi I. A., “Alternative parameter choices for multi-step quasi-Newton methods”, Optimization Methods and Software, 2 (1993), 357–370 | DOI

[5] Ford J. A., Moghrabi I. A., “Alternating multi-step quasi-Newton methods for unconstrained optimization”, J. Comput. Appl. Math., 82 (1997), 105–116 | DOI | MR | Zbl

[6] Ford J. A., Moghrabi I. A., “On the use of alternation and recurrences in two-step quasi-Newton methods”, Comput. Math. Appl., 50:7 (2005), 1041–1050 | DOI | MR | Zbl

[7] Ford J. A., Tharmlikit S., “New implicit updates in multi-step quasi-Newton methods for unconstrained optimization”, J. Comput. Appl. Math., 152 (2003), 133–146 | DOI | MR | Zbl

[8] More J. J., Garbow B. S., and Hillstrom K. E., “Testing unconstrained optimization software”, ACM Trans. Math. Software, 7 (1981), 17–41 | DOI | MR | Zbl

[9] Shanno D. F., Phua K. H., “Matrix conditioning and nonlinear optimization”, Math. Prog., 14 (1978), 149–160 | DOI | MR | Zbl

[10] Wolfe P., “Methods for linear constraints”, Nonlinear Programming, ed. J. Abadie, North-Holland Publ. Co., Amsterdam, 1967, 99–131