A regularization method for the stationary Maxwell equations in an inhomogeneous conducting medium
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 2, pp. 161-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers a problem of defining the vector potential of a magnetic field with a non-standard calibration in an inhomogeneous conducting medium. The problem in question is the one with constraints on the right-hand side and on the solution itself. The generalized and regularized statement of this problem without constraints is proposed and substantiated. This statement of the problem is equivalent to the original generalized problem with constraints.
@article{SJVM_2009_12_2_a3,
     author = {I. A. Kremer and M. V. Urev},
     title = {A regularization method for the stationary {Maxwell} equations in an inhomogeneous conducting medium},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {161--170},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a3/}
}
TY  - JOUR
AU  - I. A. Kremer
AU  - M. V. Urev
TI  - A regularization method for the stationary Maxwell equations in an inhomogeneous conducting medium
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 161
EP  - 170
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a3/
LA  - ru
ID  - SJVM_2009_12_2_a3
ER  - 
%0 Journal Article
%A I. A. Kremer
%A M. V. Urev
%T A regularization method for the stationary Maxwell equations in an inhomogeneous conducting medium
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 161-170
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a3/
%G ru
%F SJVM_2009_12_2_a3
I. A. Kremer; M. V. Urev. A regularization method for the stationary Maxwell equations in an inhomogeneous conducting medium. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 2, pp. 161-170. http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a3/

[1] Ivanov M. I., Kateshov V. A., Kremer I. A., Urev M. V., “Reshenie trekhmernykh statsionarnykh zadach impulsnoi elektrorazvedki”, Avtometriya, 43:2 (2007), 22–32

[2] Ivanov M. I., Kateshov V. A., Kremer I. A., Urev M. V., “Reshenie trekhmernykh nestatsionarnykh zadach impulsnoi elektrorazvedki”, Avtometriya, 43:2 (2007), 33–44

[3] Girault V., Raviart P.-A., Finite Element Methods for Navier–Stokes Equations, Springer-Verlag, Berlin, 1986 | MR | Zbl

[4] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[5] Weber Ch., “A local compactness theorem for Maxwell's equation Math”, Methods Appl. Sci., 2 (1980), 12–25 | DOI | MR | Zbl

[6] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New-York, 1991 | MR | Zbl

[7] Chen Z., Du Q., and Zou J., “Finite element methods with matching and non-matching meshes for Maxwell equations with discontinuous coefficients”, SIAM J. Numer. Anal., 37 (2000), 1542–1570 | DOI | MR | Zbl