Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2009_12_1_a7, author = {D. Nabongo and T. K. Boni}, title = {An adaptive scheme to treat the phenomenon of quenching for a heat equation with nonlinear boundary conditions}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {107--119}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a7/} }
TY - JOUR AU - D. Nabongo AU - T. K. Boni TI - An adaptive scheme to treat the phenomenon of quenching for a heat equation with nonlinear boundary conditions JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2009 SP - 107 EP - 119 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a7/ LA - ru ID - SJVM_2009_12_1_a7 ER -
%0 Journal Article %A D. Nabongo %A T. K. Boni %T An adaptive scheme to treat the phenomenon of quenching for a heat equation with nonlinear boundary conditions %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2009 %P 107-119 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a7/ %G ru %F SJVM_2009_12_1_a7
D. Nabongo; T. K. Boni. An adaptive scheme to treat the phenomenon of quenching for a heat equation with nonlinear boundary conditions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 1, pp. 107-119. http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a7/
[1] Abia L.M., Lòpez-Marcos J.C., and Martinez J., “On the blow-up time convergence of semidiscretizations of reaction-diffusion equations”, Appl. Numer. Math., 26 (1998), 399–414 | DOI | MR | Zbl
[2] Acker A., Kawohl B., “Remarks on quenching”, Nonl. Anal. TMA, 13 (1989), 53–61 | DOI | MR | Zbl
[3] Boni T.K., “Extinction for discretizations of some semilinear parabolic equations”, C.R.A.S. Ser. I, 333 (2001), 795–800 | MR | Zbl
[4] Boni T.K., “On quenching of solutions for some semilinear parabolic equations of second order”, Bull. Belg. Math. Soc., 7 (2000), 73–95 | MR | Zbl
[5] Christov C.I., Deng K., “Numerical investigation of quenching for a nonlinear diffusion equation with singular Neumann boundary condition”, Wiley Periodicals, Inc. Numer. Methods Part. Diff. Eq., 18 (2002), 429–440 | DOI | MR | Zbl
[6] Deng K., Xu M., “Quenching for a nonlinear diffusion equation with a singular boundary condition”, Z. Angew. Math. Phys., 50 (1999), 574–584 | DOI | MR | Zbl
[7] Fila M., Kawohl B., and Levine H.A., “Quenching for quasilinear equations”, Comm. Part. Diff. Eq., 17 (1992), 593–614 | MR | Zbl
[8] Fila M., Levine H.A., “Quenching on the boundary”, Nonl. Anal. TMA, 21 (1993), 795–802 | DOI | MR | Zbl
[9] Guo J., “On a quenching problem with Robin boundary condition”, Nonl. Anal. TMA, 17 (1991), 803–809 | DOI | MR | Zbl
[10] Guo J.S., Hu B., “The profile near quenching time for the solution of a singular semilinear heat equation”, Proc. Edin. Math. Soc., 40 (1997), 437–456 | DOI | MR | Zbl
[11] Kirk C.M., Roberts C.A., “A review of quenching results in the context of nonlinear volterra equations”, Dyn. Contin. Discrete Impuls. Syst. Ser. A. Math. Anal., 10 (2003), 343–356 | MR | Zbl
[12] Levine H.A., “Quenching, nonquenching and beyond quenching for solutions of some parabolic equations”, Ann. Math. Pure Appl., 155 (1989), 243–260 | DOI | MR | Zbl
[13] Levine H.A., “The quenching of solutions of linear parabolic and hyperbolic equations with nonlinear boundary conditions”, SIAM J. Math. Anal., 14 (1983), 1139–1152 | DOI | MR
[14] Liang K.W., Lin P. , and Tan R.C.E., “Numerical solution of quenching problems using mesh-dependent variable temporal steps”, Appl. Numer. Math., 57 (2007), 791–800 | DOI | MR | Zbl
[15] Liang K.W., Lin P. , Ong M.T., and Tan R.C.E., “A splitting moving mesh method for reaction-diffusion equations of quenching type”, J. Comput. Phys., 215:2 (2006), 757–777 | DOI | MR | Zbl
[16] Nakagawa T., “Blowing up on the finite difference solution to $u_t=u_xx+u^2$”, Appl. Math. Optim., 2 (1976), 337–350 | DOI | MR | Zbl
[17] Nabongo D., Boni T.K., “Quenching for semidiscretization of a heat equation with a singular boundary condition”, Asympt. Anal., 59:1-2 (2008), 27–38 | MR | Zbl
[18] Phillips D., “Existence of solutions of quenching problems”, Appl. Anal., 24 (1987), 253–264 | DOI | MR | Zbl
[19] Protter M.H., Weinberger H.F., Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, NJ, 1967 | MR | Zbl
[20] Sheng Q., Khaliq A.Q.M., “Adaptive algorithms for convection-diffusion-reaction equations of quenching type”, Dyn. Contin. Discrete Impuls. Syst. Ser. A. Math. Anal., 8 (2001), 129–148 | MR | Zbl
[21] Sheng Q., Khaliq A.Q.M., “A compound adaptive approach to degenerate nonlinear quenching problems”, Numer. Methods PDE, 15 (1999), 29–47 | 3.0.CO;2-L class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[22] Walter W., Differential-und Integral-Ungleichungen, Springer, Berlin, 1964 | MR