An adaptive scheme to treat the phenomenon of quenching for a heat equation with nonlinear boundary conditions
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 1, pp. 107-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper concerns the study of numerical approximation for the following boundary value problem $$ \begin{cases} u_t(x,t)-u_{xx}(x,t)=0,\quad 01,\ t\in(0,T),\\ u(0,t)=1,\ u_x(1,t)=-u^{-p}(1,t),\quad t\in(0,T),\\ u(x,0)=u_0(x)>0,\quad 0\le x\le 1, \end{cases} $$ where $p>0$, $u_0\in C^2([0,1])$, $u_0(0)=1$ and $u_0'(1)=-u_0^{-p}(1)$. We find some conditions under which the solution of a discrete form of the above problem quenches in a finite time and estimate its numerical quenching time. We also prove that the numerical quenching time converges to the real one when the mesh size goes to zero. Finally, we give some numerical experiments to illustrate our analysis.
@article{SJVM_2009_12_1_a7,
     author = {D. Nabongo and T. K. Boni},
     title = {An adaptive scheme to treat the phenomenon of quenching for a heat equation with nonlinear boundary conditions},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {107--119},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a7/}
}
TY  - JOUR
AU  - D. Nabongo
AU  - T. K. Boni
TI  - An adaptive scheme to treat the phenomenon of quenching for a heat equation with nonlinear boundary conditions
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 107
EP  - 119
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a7/
LA  - ru
ID  - SJVM_2009_12_1_a7
ER  - 
%0 Journal Article
%A D. Nabongo
%A T. K. Boni
%T An adaptive scheme to treat the phenomenon of quenching for a heat equation with nonlinear boundary conditions
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 107-119
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a7/
%G ru
%F SJVM_2009_12_1_a7
D. Nabongo; T. K. Boni. An adaptive scheme to treat the phenomenon of quenching for a heat equation with nonlinear boundary conditions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 1, pp. 107-119. http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a7/

[1] Abia L.M., Lòpez-Marcos J.C., and Martinez J., “On the blow-up time convergence of semidiscretizations of reaction-diffusion equations”, Appl. Numer. Math., 26 (1998), 399–414 | DOI | MR | Zbl

[2] Acker A., Kawohl B., “Remarks on quenching”, Nonl. Anal. TMA, 13 (1989), 53–61 | DOI | MR | Zbl

[3] Boni T.K., “Extinction for discretizations of some semilinear parabolic equations”, C.R.A.S. Ser. I, 333 (2001), 795–800 | MR | Zbl

[4] Boni T.K., “On quenching of solutions for some semilinear parabolic equations of second order”, Bull. Belg. Math. Soc., 7 (2000), 73–95 | MR | Zbl

[5] Christov C.I., Deng K., “Numerical investigation of quenching for a nonlinear diffusion equation with singular Neumann boundary condition”, Wiley Periodicals, Inc. Numer. Methods Part. Diff. Eq., 18 (2002), 429–440 | DOI | MR | Zbl

[6] Deng K., Xu M., “Quenching for a nonlinear diffusion equation with a singular boundary condition”, Z. Angew. Math. Phys., 50 (1999), 574–584 | DOI | MR | Zbl

[7] Fila M., Kawohl B., and Levine H.A., “Quenching for quasilinear equations”, Comm. Part. Diff. Eq., 17 (1992), 593–614 | MR | Zbl

[8] Fila M., Levine H.A., “Quenching on the boundary”, Nonl. Anal. TMA, 21 (1993), 795–802 | DOI | MR | Zbl

[9] Guo J., “On a quenching problem with Robin boundary condition”, Nonl. Anal. TMA, 17 (1991), 803–809 | DOI | MR | Zbl

[10] Guo J.S., Hu B., “The profile near quenching time for the solution of a singular semilinear heat equation”, Proc. Edin. Math. Soc., 40 (1997), 437–456 | DOI | MR | Zbl

[11] Kirk C.M., Roberts C.A., “A review of quenching results in the context of nonlinear volterra equations”, Dyn. Contin. Discrete Impuls. Syst. Ser. A. Math. Anal., 10 (2003), 343–356 | MR | Zbl

[12] Levine H.A., “Quenching, nonquenching and beyond quenching for solutions of some parabolic equations”, Ann. Math. Pure Appl., 155 (1989), 243–260 | DOI | MR | Zbl

[13] Levine H.A., “The quenching of solutions of linear parabolic and hyperbolic equations with nonlinear boundary conditions”, SIAM J. Math. Anal., 14 (1983), 1139–1152 | DOI | MR

[14] Liang K.W., Lin P. , and Tan R.C.E., “Numerical solution of quenching problems using mesh-dependent variable temporal steps”, Appl. Numer. Math., 57 (2007), 791–800 | DOI | MR | Zbl

[15] Liang K.W., Lin P. , Ong M.T., and Tan R.C.E., “A splitting moving mesh method for reaction-diffusion equations of quenching type”, J. Comput. Phys., 215:2 (2006), 757–777 | DOI | MR | Zbl

[16] Nakagawa T., “Blowing up on the finite difference solution to $u_t=u_xx+u^2$”, Appl. Math. Optim., 2 (1976), 337–350 | DOI | MR | Zbl

[17] Nabongo D., Boni T.K., “Quenching for semidiscretization of a heat equation with a singular boundary condition”, Asympt. Anal., 59:1-2 (2008), 27–38 | MR | Zbl

[18] Phillips D., “Existence of solutions of quenching problems”, Appl. Anal., 24 (1987), 253–264 | DOI | MR | Zbl

[19] Protter M.H., Weinberger H.F., Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, NJ, 1967 | MR | Zbl

[20] Sheng Q., Khaliq A.Q.M., “Adaptive algorithms for convection-diffusion-reaction equations of quenching type”, Dyn. Contin. Discrete Impuls. Syst. Ser. A. Math. Anal., 8 (2001), 129–148 | MR | Zbl

[21] Sheng Q., Khaliq A.Q.M., “A compound adaptive approach to degenerate nonlinear quenching problems”, Numer. Methods PDE, 15 (1999), 29–47 | 3.0.CO;2-L class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[22] Walter W., Differential-und Integral-Ungleichungen, Springer, Berlin, 1964 | MR