An adaptive scheme to treat the phenomenon of quenching for a heat equation with nonlinear boundary conditions
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 1, pp. 107-119

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper concerns the study of numerical approximation for the following boundary value problem $$ \begin{cases} u_t(x,t)-u_{xx}(x,t)=0,\quad 01,\ t\in(0,T),\\ u(0,t)=1,\ u_x(1,t)=-u^{-p}(1,t),\quad t\in(0,T),\\ u(x,0)=u_0(x)>0,\quad 0\le x\le 1, \end{cases} $$ where $p>0$, $u_0\in C^2([0,1])$, $u_0(0)=1$ and $u_0'(1)=-u_0^{-p}(1)$. We find some conditions under which the solution of a discrete form of the above problem quenches in a finite time and estimate its numerical quenching time. We also prove that the numerical quenching time converges to the real one when the mesh size goes to zero. Finally, we give some numerical experiments to illustrate our analysis.
@article{SJVM_2009_12_1_a7,
     author = {D. Nabongo and T. K. Boni},
     title = {An adaptive scheme to treat the phenomenon of quenching for a heat equation with nonlinear boundary conditions},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {107--119},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a7/}
}
TY  - JOUR
AU  - D. Nabongo
AU  - T. K. Boni
TI  - An adaptive scheme to treat the phenomenon of quenching for a heat equation with nonlinear boundary conditions
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 107
EP  - 119
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a7/
LA  - ru
ID  - SJVM_2009_12_1_a7
ER  - 
%0 Journal Article
%A D. Nabongo
%A T. K. Boni
%T An adaptive scheme to treat the phenomenon of quenching for a heat equation with nonlinear boundary conditions
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 107-119
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a7/
%G ru
%F SJVM_2009_12_1_a7
D. Nabongo; T. K. Boni. An adaptive scheme to treat the phenomenon of quenching for a heat equation with nonlinear boundary conditions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 1, pp. 107-119. http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a7/