$L^\infty$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 1, pp. 91-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate $L^\infty$-error estimates for convex quadratic optimal control problems governed by nonlinear elliptic partial differential equations using mixed finite element methods. The state and the co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive $L^\infty$-error estimates of optimal order for a mixed finite element approximation of a semilinear elliptic optimal control problem. Finally, we present numerical tests which confirm our theoretical results.
@article{SJVM_2009_12_1_a6,
     author = {Zuliang Lu and Yanping Chen},
     title = {$L^\infty$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {91--105},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a6/}
}
TY  - JOUR
AU  - Zuliang Lu
AU  - Yanping Chen
TI  - $L^\infty$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 91
EP  - 105
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a6/
LA  - ru
ID  - SJVM_2009_12_1_a6
ER  - 
%0 Journal Article
%A Zuliang Lu
%A Yanping Chen
%T $L^\infty$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 91-105
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a6/
%G ru
%F SJVM_2009_12_1_a6
Zuliang Lu; Yanping Chen. $L^\infty$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 1, pp. 91-105. http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a6/

[1] Schatz A.H., Wahlbin L.B., “Pointwise error estimates for diffrences in piecewise linear finite element approximations”, SIAM J. Numer. Anal., 46 (2003), 2149–2160 | DOI | MR

[2] Schatz A.H., Wahlbin L.B., “Asymptotically exact a posetriori error estimators for the pointwise gradient error on each element in irregular meshes. II. The piecewise linear case”, Math. ComP., 73 (2004), 517–523 | DOI | MR | Zbl

[3] Kwon Y., Milner F.A., “$L^\infty$-error estimates for mixed methods for semilinear second-order elliptic equations”, SIAM J. Numer. Anal., 25 (1988), 46–53 | DOI | MR | Zbl

[4] Brunner H., Yan N.N., “Finite element methods for optimal control problems governed by integral equations and integro-differential equations”, Applied Numerical Mathematic, 47 (2003), 173–187 | DOI

[5] Falk F.S., “Approximation of a class of optimal control problems with order of convergence estimates”, J. Math. Anal. Appl., 44 (1973), 28–47 | DOI | MR | Zbl

[6] Gunzburger M.D., Hou S.L., “Finite dimensional approximation of a class of constrained nonlinear control problems”, SIAM J. Control Optim., 34 (1996), 1001–1043 | DOI | MR | Zbl

[7] Meyer C., Rösch A., “$L^\infty$-error estimates for approximated optimal control problems”, SIAM J. Control Optim., 44:5 (2005), 1636–1649 | DOI | MR

[8] Liu W.B., Yan N.N., “A posteriori error estimates for control problems governed by Stokes' equations”, SIAM J. Numer. Anal., 40 (2003), 1850–1869 | DOI | MR

[9] Liu W.B., Yan N.N., “A posteriori error estimates for distributed convex optimal control problems”, Adances in Computational Mathematics, 15 (2001), 285–309 | DOI | MR | Zbl

[10] Raviart P. A., Thomas J.M., “A mixed finite element method for 2nd order elliptic problems”, Lecture Notes in Math., 660, 1977, 292–315 | MR

[11] Hou L., Turner J.C., “Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls”, Numer. Math., 71 (1995), 289–315 | DOI | MR | Zbl

[12] Chen Y., Liu W.B., “Error estimates and superconvergence of mixed finite element for quadratic optimal control”, Int. J. Numer. Anal. Modeling, 3 (2006), 311–321 | MR | Zbl

[13] Chen Y., Liu W. B., “A posteriori error estimates for mixed finite element solutions of convex optimal control problems”, J. ComP. Appl. Math., 211 (2008), 76–89 | DOI | MR | Zbl

[14] Arada N., Casas E., and Tröltzsch F., “Error estimates for the numerical approximation of a semilinear elliptic control problem”, ComP. Optim. Appl., 23 (2002), 201–229 | DOI | MR | Zbl

[15] Lions J.L., Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971 | MR | Zbl

[16] Chen Y., “Superconvergence of optimal control problems by rectangular mixed finite element methods”, Math. ComP., 77 (2008), 1269–1291 | DOI | MR

[17] Lu Z.L., Zhang H.W., “V cycle Multi-grid-cycle method of viscoelastic fluid flow obeying an Oldroyd B type constitutive law”, Numer. Anal. and Applications, 1:1 (2008), 69–78 | DOI

[18] Aleksandrov V.M., “Iterative method for computing time optimal control in real time mode”, Sib. J. of Numer. Mathematics, 10:1 (2007), 1–28

[19] Miliner F.A., “Mixed finite element methods for quasilinear second-order elliptic problems”, Math. ComP., 44 (1985), 303–320 | DOI | MR

[20] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer, Berlin, 1991 | MR | Zbl

[21] Chen Y., Liu W.B., “Error estimates and superconvergence of mixed finite elements for quadratic optimal control”, Int. J. Numer. Anal. Modeling, 3 (2006), 311–321 | MR | Zbl

[22] Scholz R., “A remark on the rate of convergence for a mixed finite element method for second order problems”, Numer. Funct. Anal. Optim., 4 (1982), 269–277 | DOI | MR | Zbl

[23] Braess D., Finite Elements, Springer-Verlag, Berlin, Heidelberg, 1992 | Zbl

[24] Xing X., Chen Y., “$L^\infty$-error estimates for general optimal control problem by mixed finite element methods”, Int. J. Numer. Anal. Modeling, 5 (2008), 441–456 | MR | Zbl

[25] Li R., Liu W.B., http://circus.math.pku.edu.cn/AFEPack