Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2009_12_1_a6, author = {Zuliang Lu and Yanping Chen}, title = {$L^\infty$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {91--105}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a6/} }
TY - JOUR AU - Zuliang Lu AU - Yanping Chen TI - $L^\infty$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2009 SP - 91 EP - 105 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a6/ LA - ru ID - SJVM_2009_12_1_a6 ER -
%0 Journal Article %A Zuliang Lu %A Yanping Chen %T $L^\infty$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2009 %P 91-105 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a6/ %G ru %F SJVM_2009_12_1_a6
Zuliang Lu; Yanping Chen. $L^\infty$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 1, pp. 91-105. http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a6/
[1] Schatz A.H., Wahlbin L.B., “Pointwise error estimates for diffrences in piecewise linear finite element approximations”, SIAM J. Numer. Anal., 46 (2003), 2149–2160 | DOI | MR
[2] Schatz A.H., Wahlbin L.B., “Asymptotically exact a posetriori error estimators for the pointwise gradient error on each element in irregular meshes. II. The piecewise linear case”, Math. ComP., 73 (2004), 517–523 | DOI | MR | Zbl
[3] Kwon Y., Milner F.A., “$L^\infty$-error estimates for mixed methods for semilinear second-order elliptic equations”, SIAM J. Numer. Anal., 25 (1988), 46–53 | DOI | MR | Zbl
[4] Brunner H., Yan N.N., “Finite element methods for optimal control problems governed by integral equations and integro-differential equations”, Applied Numerical Mathematic, 47 (2003), 173–187 | DOI
[5] Falk F.S., “Approximation of a class of optimal control problems with order of convergence estimates”, J. Math. Anal. Appl., 44 (1973), 28–47 | DOI | MR | Zbl
[6] Gunzburger M.D., Hou S.L., “Finite dimensional approximation of a class of constrained nonlinear control problems”, SIAM J. Control Optim., 34 (1996), 1001–1043 | DOI | MR | Zbl
[7] Meyer C., Rösch A., “$L^\infty$-error estimates for approximated optimal control problems”, SIAM J. Control Optim., 44:5 (2005), 1636–1649 | DOI | MR
[8] Liu W.B., Yan N.N., “A posteriori error estimates for control problems governed by Stokes' equations”, SIAM J. Numer. Anal., 40 (2003), 1850–1869 | DOI | MR
[9] Liu W.B., Yan N.N., “A posteriori error estimates for distributed convex optimal control problems”, Adances in Computational Mathematics, 15 (2001), 285–309 | DOI | MR | Zbl
[10] Raviart P. A., Thomas J.M., “A mixed finite element method for 2nd order elliptic problems”, Lecture Notes in Math., 660, 1977, 292–315 | MR
[11] Hou L., Turner J.C., “Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls”, Numer. Math., 71 (1995), 289–315 | DOI | MR | Zbl
[12] Chen Y., Liu W.B., “Error estimates and superconvergence of mixed finite element for quadratic optimal control”, Int. J. Numer. Anal. Modeling, 3 (2006), 311–321 | MR | Zbl
[13] Chen Y., Liu W. B., “A posteriori error estimates for mixed finite element solutions of convex optimal control problems”, J. ComP. Appl. Math., 211 (2008), 76–89 | DOI | MR | Zbl
[14] Arada N., Casas E., and Tröltzsch F., “Error estimates for the numerical approximation of a semilinear elliptic control problem”, ComP. Optim. Appl., 23 (2002), 201–229 | DOI | MR | Zbl
[15] Lions J.L., Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971 | MR | Zbl
[16] Chen Y., “Superconvergence of optimal control problems by rectangular mixed finite element methods”, Math. ComP., 77 (2008), 1269–1291 | DOI | MR
[17] Lu Z.L., Zhang H.W., “V cycle Multi-grid-cycle method of viscoelastic fluid flow obeying an Oldroyd B type constitutive law”, Numer. Anal. and Applications, 1:1 (2008), 69–78 | DOI
[18] Aleksandrov V.M., “Iterative method for computing time optimal control in real time mode”, Sib. J. of Numer. Mathematics, 10:1 (2007), 1–28
[19] Miliner F.A., “Mixed finite element methods for quasilinear second-order elliptic problems”, Math. ComP., 44 (1985), 303–320 | DOI | MR
[20] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer, Berlin, 1991 | MR | Zbl
[21] Chen Y., Liu W.B., “Error estimates and superconvergence of mixed finite elements for quadratic optimal control”, Int. J. Numer. Anal. Modeling, 3 (2006), 311–321 | MR | Zbl
[22] Scholz R., “A remark on the rate of convergence for a mixed finite element method for second order problems”, Numer. Funct. Anal. Optim., 4 (1982), 269–277 | DOI | MR | Zbl
[23] Braess D., Finite Elements, Springer-Verlag, Berlin, Heidelberg, 1992 | Zbl
[24] Xing X., Chen Y., “$L^\infty$-error estimates for general optimal control problem by mixed finite element methods”, Int. J. Numer. Anal. Modeling, 5 (2008), 441–456 | MR | Zbl
[25] Li R., Liu W.B., http://circus.math.pku.edu.cn/AFEPack