Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2009_12_1_a4, author = {Z. Kamont and W. Czernous}, title = {Implicit difference methods for {Hamilton} {Jacobi} functional differential equations}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {57--70}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a4/} }
TY - JOUR AU - Z. Kamont AU - W. Czernous TI - Implicit difference methods for Hamilton Jacobi functional differential equations JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2009 SP - 57 EP - 70 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a4/ LA - ru ID - SJVM_2009_12_1_a4 ER -
Z. Kamont; W. Czernous. Implicit difference methods for Hamilton Jacobi functional differential equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 1, pp. 57-70. http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a4/
[1] Baranowska A., “Numerical methods for nonlinear first-order partial differential equations with deviated variables”, Numer. Methods Partial Diff. Equat., 22 (2006), 708–727 | DOI | MR | Zbl
[2] Brandi P., Kamont Z., and Salvadori A., “Approximate solutions of mixed problems for first order partial differential functional equations”, Atti Sem. Mat. Fis. Univ. Modena, 39 (1991), 277–302 | MR | Zbl
[3] Brandi P., Kamont Z., and Salvadori A., “Existence of generalized solutions of hyperbolic functional differential equations”, Nonlinear Anal. TMA, 50 (2002), 919–940 | DOI | MR | Zbl
[4] Brandi P., Marcelli C., “On mixed problem for first order partial differentiaal functional equations”, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 497–510 | MR | Zbl
[5] Czernous W., “Generalized Euler method for first order partial diferential functional equations”, Memoirs of Diff. Equat. and Math. Phys., 39 (2006), 49–68 | MR | Zbl
[6] Godlewski E., Raviart P., Numerical Approximation of Hyperbolic Systems of Conservations Laws, Springer-Verlag, Berlin, New York, 1996 | MR | Zbl
[7] Kamont Z., Hyperbolic Functional Differential Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston, London, 1999 | MR | Zbl
[8] Kantorovich L.V., Akilov G.P., Functional Analysis, Pergamon Press, Oxford, Elmsford, New York, 1982 | MR | Zbl
[9] Lakshmikantham V., Leela S., Differential Inequalities, Vol. II, Acad. Press, New York, London, 1969 | Zbl
[10] Pao C.V., “Numerical methods for systems of nonlinear parabolic equations with time delays”, J. Math. Anal. Appl., 240 (1999), 249–279 | DOI | MR | Zbl
[11] Pao C.V., “Finite difference reaction-diffusion systems with coupled boundary conditions and time delays”, J. Math. Anal. Appl., 272 (2002), 407–434 | DOI | MR | Zbl
[12] Przadka K., “Difference methods for non-linear partial differential functional equations of the first order”, Math. Nachr., 138 (1988), 105–123 | DOI | MR | Zbl
[13] Szarski J., Differential Inequalities, Polish Scientific Publishers, Warszawa, 1966
[14] Thomas J.W., Numerical Partial Differential Equations, Springer, New York, 1999 | MR
[15] Voigt W., “On finite-difference methods for parabolic functional differential equations on unbounded domains”, Numerical Methods and Applications, Publ. House Bulg. Acad. Sci., Sofia, 1989, 559–567 | MR