Implicit difference methods for Hamilton Jacobi functional differential equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 1, pp. 57-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

Classical solutions of initial boundary value problems are approximated in this paper by solutions of associated implicit difference functional equations. The stability is proved by using a comparison technique with nonlinear estimates of the Perron type for given functions. The Newton method is used for numerical solving of nonlinear equations generated by implicit difference schemes. It is shown that there are implicit difference schemes which are convergent and the corresponding explicit difference methods are not convergent. The results can be applied to differential integral problems and differential equations with deviated variables.
@article{SJVM_2009_12_1_a4,
     author = {Z. Kamont and W. Czernous},
     title = {Implicit difference methods for {Hamilton} {Jacobi} functional differential equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {57--70},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a4/}
}
TY  - JOUR
AU  - Z. Kamont
AU  - W. Czernous
TI  - Implicit difference methods for Hamilton Jacobi functional differential equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 57
EP  - 70
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a4/
LA  - ru
ID  - SJVM_2009_12_1_a4
ER  - 
%0 Journal Article
%A Z. Kamont
%A W. Czernous
%T Implicit difference methods for Hamilton Jacobi functional differential equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 57-70
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a4/
%G ru
%F SJVM_2009_12_1_a4
Z. Kamont; W. Czernous. Implicit difference methods for Hamilton Jacobi functional differential equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 1, pp. 57-70. http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a4/

[1] Baranowska A., “Numerical methods for nonlinear first-order partial differential equations with deviated variables”, Numer. Methods Partial Diff. Equat., 22 (2006), 708–727 | DOI | MR | Zbl

[2] Brandi P., Kamont Z., and Salvadori A., “Approximate solutions of mixed problems for first order partial differential functional equations”, Atti Sem. Mat. Fis. Univ. Modena, 39 (1991), 277–302 | MR | Zbl

[3] Brandi P., Kamont Z., and Salvadori A., “Existence of generalized solutions of hyperbolic functional differential equations”, Nonlinear Anal. TMA, 50 (2002), 919–940 | DOI | MR | Zbl

[4] Brandi P., Marcelli C., “On mixed problem for first order partial differentiaal functional equations”, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 497–510 | MR | Zbl

[5] Czernous W., “Generalized Euler method for first order partial diferential functional equations”, Memoirs of Diff. Equat. and Math. Phys., 39 (2006), 49–68 | MR | Zbl

[6] Godlewski E., Raviart P., Numerical Approximation of Hyperbolic Systems of Conservations Laws, Springer-Verlag, Berlin, New York, 1996 | MR | Zbl

[7] Kamont Z., Hyperbolic Functional Differential Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston, London, 1999 | MR | Zbl

[8] Kantorovich L.V., Akilov G.P., Functional Analysis, Pergamon Press, Oxford, Elmsford, New York, 1982 | MR | Zbl

[9] Lakshmikantham V., Leela S., Differential Inequalities, Vol. II, Acad. Press, New York, London, 1969 | Zbl

[10] Pao C.V., “Numerical methods for systems of nonlinear parabolic equations with time delays”, J. Math. Anal. Appl., 240 (1999), 249–279 | DOI | MR | Zbl

[11] Pao C.V., “Finite difference reaction-diffusion systems with coupled boundary conditions and time delays”, J. Math. Anal. Appl., 272 (2002), 407–434 | DOI | MR | Zbl

[12] Przadka K., “Difference methods for non-linear partial differential functional equations of the first order”, Math. Nachr., 138 (1988), 105–123 | DOI | MR | Zbl

[13] Szarski J., Differential Inequalities, Polish Scientific Publishers, Warszawa, 1966

[14] Thomas J.W., Numerical Partial Differential Equations, Springer, New York, 1999 | MR

[15] Voigt W., “On finite-difference methods for parabolic functional differential equations on unbounded domains”, Numerical Methods and Applications, Publ. House Bulg. Acad. Sci., Sofia, 1989, 559–567 | MR