Simulation of vector semi-binary homogeneous random fields and modeling of broken clouds
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 3, pp. 347-356.

Voir la notice de l'article provenant de la source Math-Net.Ru

A vector-valued homogeneous random field will be called semi-binary if its single-point marginal distribution is a mixture of a singular distribution and a continuous one. In this paper, we present methods of numerical simulation of semi-binary fields on the basis of the correlation structure and the marginal distribution. As an example, we construct a combined model of cloud top height and optical thickness using satellite observations results.
@article{SJVM_2008_11_3_a8,
     author = {S. M. Prigarin and A. L. Marshak},
     title = {Simulation of vector semi-binary homogeneous random fields and modeling of broken clouds},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {347--356},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a8/}
}
TY  - JOUR
AU  - S. M. Prigarin
AU  - A. L. Marshak
TI  - Simulation of vector semi-binary homogeneous random fields and modeling of broken clouds
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2008
SP  - 347
EP  - 356
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a8/
LA  - ru
ID  - SJVM_2008_11_3_a8
ER  - 
%0 Journal Article
%A S. M. Prigarin
%A A. L. Marshak
%T Simulation of vector semi-binary homogeneous random fields and modeling of broken clouds
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2008
%P 347-356
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a8/
%G ru
%F SJVM_2008_11_3_a8
S. M. Prigarin; A. L. Marshak. Simulation of vector semi-binary homogeneous random fields and modeling of broken clouds. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 3, pp. 347-356. http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a8/

[1] Kargin B. A., Prigarin S. M., “Imitatsionnoe modelirovanie kuchevoi oblachnosti dlya issledovaniya protsessov perenosa solnechnoi radiatsii v atmosfere metodom Monte-Karlo”, Optika atmosfery i okeana, 7:9 (1994), 1275–1287

[2] Prigarin S. M., Martin A., Winkler G., “Numerical models of binary random fields on the basis of thresholds of Gaussian functions”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 7:2 (2004), 165–175 | Zbl

[3] Prigarin S. M., Marshak A. L., “Chislennaya imitatsionnaya model razorvannoi oblachnosti, adaptirovannaya k rezultatam nablyudenii”, Optika atmosfery i okeana, 18:3 (2005), 256–263

[4] Piranashvili Z. A., “Nekotorye voprosy statistiko-veroyatnostnogo modelirovaniya sluchainykh protsessov”, Voprosy issledovaniya operatsii, Metsniereba, Tbilisi, 1966, 53–91

[5] Prigarin S. M., Metody chislennogo modelirovaniya sluchainykh protsessov i polei, Izd-vo IVMiMG SO RAN, Novosibirsk, 2005

[6] Mikhailov G. A., “Chislennoe postroenie sluchainogo polya s zadannoi spektralnoi plotnostyu”, Dokl. AN SSSR, 238:4 (1978), 793–795 | MR

[7] Prigarin S. M., Spectral Models of Random Fields in Monte Carlo Methods, VSP, Utrecht, 2001