Optimal detection of a~recurring tuple of reference fragments in a~quasi-periodic sequence
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 3, pp. 311-327
Voir la notice de l'article provenant de la source Math-Net.Ru
The a posteriori (off-line) approach to solving the problem of maximum-likelihood detection of a recurring tuple containing reference fragments in a numerical quasi-periodic sequence is studied. The case is analyzed, where (1) the total number of fragments in a sequence is unknown; (2) the index of a sequence term corresponding to the beginning of a fragment is a deterministic (not random) value; (3) a sequence distorted by an additive uncorrelated Gaussian noise is available for observation. It is shown that the problem under consideration is reduced to testing a set of simple hypotheses about the mean of a random Gaussian vector. The cardinality of this totality exponentially grows as the vector dimension (i.e., the length of a sequence understudy) increases. It is established that the search for a maximum-likelihood hypothesis is equivalent to finding the arguments which yield a maximum for an auxiliary objective function. It is shown that maximizing this objective function is reduced to solving a special optimization problem. It is proven that this special problem is a polynomial-solvable one. The exact algorithm for solving this problem is substantiated, which underlies the algorithm for the optimal (maximum-likelihood) detection of the recurring tuple. The kernel of this algorithm is the algorithm for solution of a special (basic) optimization problem. The results of numerical simulation are presented.
@article{SJVM_2008_11_3_a5,
author = {A. V. Kel'manov and L. V. Mikhailova and S. A. Khamidullin},
title = {Optimal detection of a~recurring tuple of reference fragments in a~quasi-periodic sequence},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {311--327},
publisher = {mathdoc},
volume = {11},
number = {3},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a5/}
}
TY - JOUR AU - A. V. Kel'manov AU - L. V. Mikhailova AU - S. A. Khamidullin TI - Optimal detection of a~recurring tuple of reference fragments in a~quasi-periodic sequence JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2008 SP - 311 EP - 327 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a5/ LA - ru ID - SJVM_2008_11_3_a5 ER -
%0 Journal Article %A A. V. Kel'manov %A L. V. Mikhailova %A S. A. Khamidullin %T Optimal detection of a~recurring tuple of reference fragments in a~quasi-periodic sequence %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2008 %P 311-327 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a5/ %G ru %F SJVM_2008_11_3_a5
A. V. Kel'manov; L. V. Mikhailova; S. A. Khamidullin. Optimal detection of a~recurring tuple of reference fragments in a~quasi-periodic sequence. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 3, pp. 311-327. http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a5/