The direct numerical Euler method for finding extrema of non-local functionals
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 3, pp. 297-309.

Voir la notice de l'article provenant de la source Math-Net.Ru

There is considered a direct numerical method, which is the generalization of the Euler method for the non-local functionals depending on functions with deviations of different signs, as well as for non-local functionals depending on functions of two independent variables.
@article{SJVM_2008_11_3_a4,
     author = {G. A. Kamenskii and G. N. Kuzmin},
     title = {The direct numerical {Euler} method for finding extrema of non-local functionals},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {297--309},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a4/}
}
TY  - JOUR
AU  - G. A. Kamenskii
AU  - G. N. Kuzmin
TI  - The direct numerical Euler method for finding extrema of non-local functionals
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2008
SP  - 297
EP  - 309
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a4/
LA  - ru
ID  - SJVM_2008_11_3_a4
ER  - 
%0 Journal Article
%A G. A. Kamenskii
%A G. N. Kuzmin
%T The direct numerical Euler method for finding extrema of non-local functionals
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2008
%P 297-309
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a4/
%G ru
%F SJVM_2008_11_3_a4
G. A. Kamenskii; G. N. Kuzmin. The direct numerical Euler method for finding extrema of non-local functionals. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 3, pp. 297-309. http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a4/

[1] Elsgolts L. E., Kachestvennye metody v matematicheskom analize, Gostekhizdat, M., 1955 | MR

[2] Gnoenskii L. S., Kamenskii G. A., Elsgolts L. E., Matematicheskie osnovy teorii upravlyaemykh sistem, Nauka, M., 1969 | MR

[3] Kamenskii G. A., “Variatsionnye i kraevye zadachi s otklonyayuschimsya argumentom”, Differentsialnye uravneniya, 6:8 (1970), 1349–1358 | MR

[4] Kamenskii G. A., Myshkis A. D., Skubachevskii A. L., “O gladkikh resheniyakh kraevoi zadachi dlya differentsialno-raznostnogo uravneniya neitralnogo tipa”, Ukrainskii matem. zhurn., 37:5 (1985), 581–590 | MR

[5] Kamenskii G. A., Myshkis A. D., Skubachevskii A. L., “Generalized and smooth solutions of boundary value problems for functionals with many senior members”, Časopis Pěst. Mat., 111:3 (1986), 254–266 | MR

[6] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968 | MR

[7] Shulman L. S., “Some differential-difference equations containing both advance and retardation”, J. Math. Phys., 15:3 (1974), 295–298 | DOI | MR

[8] Wheeler Y. A., Feynman R. P., “Classical Elecrtodynamics in terms of direct Interparticle action”, Rev. of Modern Phys., 21:3 (1949), 425–433 | DOI | MR | Zbl

[9] Kamenskii G. A., Skubachevskii A. L., Ekstremumy funktsionalov s otklonyayuschimisya argumentami, MAI, M., 1979

[10] Kamenskii G. A., Skubachevskii A. L., Lineinye kraevye zadachi dlya differentsialno-raznostnykh uravnenii, MAI, M., 1992 | MR