Comparative analysis of two numerical methods to measure Hausdorff dimension of the fractional Brownian motion
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 2, pp. 201-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

The objective of the paper is to study by Monte Carlo simulation statistical properties of two numerical methods (the extended counting method and the variance counting method) developed to estimate the Hausdorff dimension of a time series and applied to the fractional Brownian motion.
@article{SJVM_2008_11_2_a6,
     author = {S. M. Prigarin and K. Hahn and G. Winkler},
     title = {Comparative analysis of two numerical methods to measure {Hausdorff} dimension of the fractional {Brownian} motion},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {201--218},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2008_11_2_a6/}
}
TY  - JOUR
AU  - S. M. Prigarin
AU  - K. Hahn
AU  - G. Winkler
TI  - Comparative analysis of two numerical methods to measure Hausdorff dimension of the fractional Brownian motion
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2008
SP  - 201
EP  - 218
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2008_11_2_a6/
LA  - ru
ID  - SJVM_2008_11_2_a6
ER  - 
%0 Journal Article
%A S. M. Prigarin
%A K. Hahn
%A G. Winkler
%T Comparative analysis of two numerical methods to measure Hausdorff dimension of the fractional Brownian motion
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2008
%P 201-218
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2008_11_2_a6/
%G ru
%F SJVM_2008_11_2_a6
S. M. Prigarin; K. Hahn; G. Winkler. Comparative analysis of two numerical methods to measure Hausdorff dimension of the fractional Brownian motion. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 2, pp. 201-218. http://geodesic.mathdoc.fr/item/SJVM_2008_11_2_a6/

[1] Adler R. J., The Geometry of Random Fields, Wiley, New York, 1981 | MR | Zbl

[2] Barnsley M., Fractals Everywhere, Academic Press, London, 1988 | MR | Zbl

[3] Crownover R. M., Introduction to Fractals and Chaos, Johns and Bartlett Publishers, Inc., Boston–London, 1995

[4] Falconer K., Fractal Geometry, Wiley, New York, 2003 | MR | Zbl

[5] Feder J., Fractals, Plenum Press, New York, 1988 | MR | Zbl

[6] Gneting T. and Schlather M., “Stochastic models that separate fractal dimension and the hurst effect”, SIAM Review, 46:2 (2004), 269–282 | DOI | MR

[7] Mandelbrot B. B., The Fractal Geometry of Nature, W. H. Freeman and Co., New York, 1982 | MR | Zbl

[8] Mandelbrot B. B., Fractals and Scaling in Finance: Discontinuity, Concentration, Risk, Springer, New York, 2005 | MR

[9] Massopust P., Fractal Functions, Fractal Surfaces, and Wavelets, Academic Press, 1995 | MR

[10] Ogorodnikov V. A. and Prigarin S. M., Numerical Modelling of Random Processes and Fields: Algorithms and Applications, VSP, Utrecht, 1996 | MR | Zbl

[11] Orey S., “Gaussian sample functions and the hausdorff dimension of the level crossings”, Z. Warhscheinlichkeitstheorie und Verw. Gebeite, 15 (1970), 249–256 | DOI | MR | Zbl

[12] Prigarin S. M., Spectral Models of Random Fields in Monte Carlo Methods, VSP, Utrecht, 2001

[13] Sandau K., “A note on fractal sets and the measurement of fractal dimension”, Physica A, 233 (1996), 1–18 ; reprinted from: Sankhya: The Indian J. of Statistics, Series A, 25:4 (1963) | DOI | MR

[14] Sandau K. and Kurz H., “Measuring fractal dimension and complexity – an alternative approach with an application”, J. of Microscopy, 186:2 (1997), 164–176 | DOI

[15] Stoyan D. and Stoyan H., Fractals, Random Shapes and Point Fields, Wiley, Chichester, 1994 | MR