Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2008_11_2_a6, author = {S. M. Prigarin and K. Hahn and G. Winkler}, title = {Comparative analysis of two numerical methods to measure {Hausdorff} dimension of the fractional {Brownian} motion}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {201--218}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2008_11_2_a6/} }
TY - JOUR AU - S. M. Prigarin AU - K. Hahn AU - G. Winkler TI - Comparative analysis of two numerical methods to measure Hausdorff dimension of the fractional Brownian motion JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2008 SP - 201 EP - 218 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2008_11_2_a6/ LA - ru ID - SJVM_2008_11_2_a6 ER -
%0 Journal Article %A S. M. Prigarin %A K. Hahn %A G. Winkler %T Comparative analysis of two numerical methods to measure Hausdorff dimension of the fractional Brownian motion %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2008 %P 201-218 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2008_11_2_a6/ %G ru %F SJVM_2008_11_2_a6
S. M. Prigarin; K. Hahn; G. Winkler. Comparative analysis of two numerical methods to measure Hausdorff dimension of the fractional Brownian motion. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 2, pp. 201-218. http://geodesic.mathdoc.fr/item/SJVM_2008_11_2_a6/
[1] Adler R. J., The Geometry of Random Fields, Wiley, New York, 1981 | MR | Zbl
[2] Barnsley M., Fractals Everywhere, Academic Press, London, 1988 | MR | Zbl
[3] Crownover R. M., Introduction to Fractals and Chaos, Johns and Bartlett Publishers, Inc., Boston–London, 1995
[4] Falconer K., Fractal Geometry, Wiley, New York, 2003 | MR | Zbl
[5] Feder J., Fractals, Plenum Press, New York, 1988 | MR | Zbl
[6] Gneting T. and Schlather M., “Stochastic models that separate fractal dimension and the hurst effect”, SIAM Review, 46:2 (2004), 269–282 | DOI | MR
[7] Mandelbrot B. B., The Fractal Geometry of Nature, W. H. Freeman and Co., New York, 1982 | MR | Zbl
[8] Mandelbrot B. B., Fractals and Scaling in Finance: Discontinuity, Concentration, Risk, Springer, New York, 2005 | MR
[9] Massopust P., Fractal Functions, Fractal Surfaces, and Wavelets, Academic Press, 1995 | MR
[10] Ogorodnikov V. A. and Prigarin S. M., Numerical Modelling of Random Processes and Fields: Algorithms and Applications, VSP, Utrecht, 1996 | MR | Zbl
[11] Orey S., “Gaussian sample functions and the hausdorff dimension of the level crossings”, Z. Warhscheinlichkeitstheorie und Verw. Gebeite, 15 (1970), 249–256 | DOI | MR | Zbl
[12] Prigarin S. M., Spectral Models of Random Fields in Monte Carlo Methods, VSP, Utrecht, 2001
[13] Sandau K., “A note on fractal sets and the measurement of fractal dimension”, Physica A, 233 (1996), 1–18 ; reprinted from: Sankhya: The Indian J. of Statistics, Series A, 25:4 (1963) | DOI | MR
[14] Sandau K. and Kurz H., “Measuring fractal dimension and complexity – an alternative approach with an application”, J. of Microscopy, 186:2 (1997), 164–176 | DOI
[15] Stoyan D. and Stoyan H., Fractals, Random Shapes and Point Fields, Wiley, Chichester, 1994 | MR