Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2008_11_2_a3, author = {G. G. Lazareva and V. V. Mironova and N. A. Omelyanchuk and I. V. Shvab and V. A. Vshivkov and D. N. Gorpinchenko and S. N. Nikolaev and N. A. Kolchanov}, title = {Mathematical modeling of vegetation morphogenesis}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {151--166}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2008_11_2_a3/} }
TY - JOUR AU - G. G. Lazareva AU - V. V. Mironova AU - N. A. Omelyanchuk AU - I. V. Shvab AU - V. A. Vshivkov AU - D. N. Gorpinchenko AU - S. N. Nikolaev AU - N. A. Kolchanov TI - Mathematical modeling of vegetation morphogenesis JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2008 SP - 151 EP - 166 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2008_11_2_a3/ LA - ru ID - SJVM_2008_11_2_a3 ER -
%0 Journal Article %A G. G. Lazareva %A V. V. Mironova %A N. A. Omelyanchuk %A I. V. Shvab %A V. A. Vshivkov %A D. N. Gorpinchenko %A S. N. Nikolaev %A N. A. Kolchanov %T Mathematical modeling of vegetation morphogenesis %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2008 %P 151-166 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2008_11_2_a3/ %G ru %F SJVM_2008_11_2_a3
G. G. Lazareva; V. V. Mironova; N. A. Omelyanchuk; I. V. Shvab; V. A. Vshivkov; D. N. Gorpinchenko; S. N. Nikolaev; N. A. Kolchanov. Mathematical modeling of vegetation morphogenesis. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 2, pp. 151-166. http://geodesic.mathdoc.fr/item/SJVM_2008_11_2_a3/
[1] Yanenko N. N., Vvedenie v raznostnye metody matematicheskoi fiziki, Chast 1, Izd-vo NGU, Novosibirsk, 1968
[2] Lexa M. et al., “Dynamics of endogenous cytokinin pools in Tobacco seedling: a modeling approach”, Annals of Botany, 91 (2003), 585–597 | DOI
[3] Diaz J. and Alvarez-Buyalla E. R., “A model of the ethylene signaling pathway and its gene response in Arabidopsis thaliana: Pathway cross-talk and noise-filtering properties”, Chaos, 16 (2006), 023112 | DOI | Zbl
[4] Welch S. M., Roe J. L., Dong Z., “A genetic neural network model of flowering time control in Arabidopsis thaliana”, Agron J., 95 (2003), 71–81
[5] Mendoza L., Thieffry D., Alvarez-Buylla E. R., “Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis”, Bioinformatics, 15:7–8 (1999), 593–606 | DOI
[6] Iwamoto A., Satoh D., Furutani M., Maruyama S., Ohba H., Sugiyama M., “Insight into the basis of root growth in Arabidopsis thaliana provided by a simple mathematical model”, J. Plant Res., 19:2 (2006), 85–93 | DOI | MR
[7] Marder M., Sharon E., Smith S. Roman B., “Theory of edges of leaves”, Europhys. Lett., 62:4 (2003), 498–504 | DOI
[8] Dumais J., Shaw S. L., Steele C. R., Long S. R., Ray P. M., “An anisotropic-viscoplastic model of plant cell morphogenesis by tip growth”, Int. J. Dev. Biol., 50:2–3 (2006), 209–222 | DOI
[9] Meinhardt H., Models of Biological Pattern Formation, Academic Press, London, 1982
[10] Mjolsness E., Sharp D. H. and Reinitz J., “A connectionist model of development”, J. Theor. Biol., 152 (1991), 429–454 | DOI
[11] Jonsson H., Heisler M., Reddy G. V., Agrawal V., Gor V., Shapiro B. E., Mjolsness E., Meyerowitz E. M., “Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem”, Bioinformatics, Suppl. 1 (2005), i232–i240 | DOI
[12] Nikolaev S. V., Kolchanov N. A., Fadeev S. I., Kogai V. V., Miolsness E., “Issledovanie odnomernoi modeli regulyatsii razmerov vozobnovitelnoi zony v biologicheskoi tkani”, Vychislitelnye tekhnologii, 11:2 (2006), 67–81 | MR
[13] Prusinkiewicz P. and Lindenmayer A., The Algorithmic Beauty of Plants, Springer-Verlag, New York–London, 1990 | MR | Zbl
[14] Tuza Z. and Lindenmayer A., “Locally generated colourings of hexagonal cell division patterns: application to retinal cell differentiation”, Lindenmayer systems: Impacts on theoretical computer science, computer graphics, and developmental biology, Springer-Verlag, Berlin, 1992, 333–350 | MR
[15] Bidel L. P. R., Pages L., Riviere L. M., Pelloux G., Lorendau J. Y., “MassFlowDyn I: a carbon transport and partitioning model for root system architecture”, Ann. Bot (Lond), 85 (2000), 869–886 | DOI
[16] Le Roux X., Lacointe A., Escobar-Gutierez A., Le Dizes S., “Carbonbased models of individual tree growth: a critical appraisal”, Ann. Sci., 58 (2001), 469–506 | DOI
[17] Fruh T., Kurth W., “The hydraulic system of trees: theoretical framework and numerical simulation”, J. Theor. Biol., 201 (1999), 251–270 | DOI
[18] Rolland-Lagan A-G. and Prusinkiewicz P., “Reviewing models of auxin canalization in the context of leaf vein pattern formation in Arabidopsis”, The Plant J., 44 (2005), 854–865 | DOI
[19] de Reuille P. B., Bohn-Courseau I., Ljung K., Morin H., Carraro N., Godin C., Traas J., “Computer simulations reveal properties of the cell-cell signaling network at the shoot apex in Arabidopsis”, Proc. Natl. Acad. Sci. USA, 103:5 (2006), 1627–1632 | DOI
[20] Swarup R. et al., “Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal”, Nat. Cell Biol., 7:11 (2005), 1057–1065 | DOI
[21] Chavarra-Krauser A. Schurr U. “A cellular growth model for root tips”, J. Theor. Biol., 230 (2004), 21–32 | DOI | MR
[22] Bruggement F. J., Lebbenga K. R., Duijn B. V., “The diffusive transport of gibberellin and abscisic acid through the aleyrone layear of germinating barley grain: a mathematical model”, Planta, 214 (2001), 89–96 | DOI
[23] Forest L., Padill F. Martinez S. Demongeot J. Martin J. C., “Modelling of auxin transport affected by gravity and differential radial growth”, J. Theor. Biol., 241:2 (2005), 241–251 | DOI | MR
[24] Myerscough M. R., “Pattern formation in a generalized chemotactic model”, Bulletin of Mathematical biology, 60 (1998), 1–26 | DOI | Zbl
[25] Alekseev D. V. i dr., “Zakonomernosti razmetki organov tsvetka Arabidopsis thaliana. Matematicheskoe modelirovanie”, DAN, 401:4 (2005), 570–573
[26] Jonsson H., Heisler M. G., Shapiro B. E., Meyerowitz E. M., Mjolsness E., “An auxin-driven polarized transport model for phyllotaxis”, Proc. Natl. Acad. Sci. USA, 103:5 (2006), 1633–1638 | DOI | MR
[27] Kramer E. M., “PIN and AUX/LAX proteins: their role in auxin accumulation”, Trends Plant Sci., 9:12 (2004), 578–582 | DOI
[28] Kramer E. M., “A Mathematical model of auxin-mediated radial growth in trees”, J. Theor. Biol., 208 (2001), 387–397 | DOI
[29] Mitchison G. J., “A model for vein formation in higher plants”, Proc. R. Soc. London Ser., 207 (1980), 79–109 | DOI
[30] Rudge T. and Haseloff J., “A computational model of cellular morphogenesis in plants”, Advances in Artificial Life, Lecture Notes in Computer Science, 3630, Springer, Berlin–Heidelberg, 2005, 78–87
[31] Campanoni P., Blasius B., Nick P., “Auxin transport synchronizes the pattern of cell division in a tobacco cell line”, Plant Physiology, 133 (2003), 1251–1260 | DOI
[32] Mikhailov G. A., Vesovye metody Monte-Karlo, Izd-vo SO RAN, Novosibirsk, 2000 | MR
[33] Bandman O. L., “Kletochno-avtomatnye modeli prostranstvennoi dinamiki”, Metody i modeli sovremennogo programmirovaniya, Sistemnaya informatika, 10, Izd-vo SO RAN, Novosibirsk, 2006
[34] Bandman O., “Algebraic properties of cellular automata: the basis for composition technique”, Proc of the Intern. Conf. ACRI-2004, Lecture Notes in Computer Science, 3305, eds. P. M. A. Sloot, B. Chopard, A. G. Hoekstra, 2004, 688–697 | Zbl
[35] Markova V. P., “Primenenie modulyarnoi arifmetiki dlya modelirovaniya diffuzii”, Avtometriya, 39:3 (2003), 60–71
[36] Medvedev Yu. G., “Trekhmernaya kletochno-avtomatnaya model potoka vyazkoi zhidkosti”, Avtometriya, 39:3 (2003), 43–50
[37] Akberdin I. R., Ozonov E. A., Mironova V. V., Komarov A. V., Omelyanchuk N. A., Likhoshvai V. A., “A cellular automaton to model the development of shoot apical meristem of Arabidopsis thaliana”, Bioinformatics of Genome Regulation and Structure, II, eds. Kolchanov N., Hofestaedt R., Milanesi L., Springer, 2006, 185–189
[38] Likhoshvai V. A., Ratushny A. V., “In Silico Cell I. Hierarchical approach and generalized hill functions in modeling enzymatic reactions and gene expression regulation”, Proc. of The Fifth Int. Conf. on Bioinformatics of Genome Regulation and Structure, Vol. 2, 2006, 13–18