Non-convex quadratic optimization on a~parallelepiped
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 1, pp. 69-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

The approximating-combinatorial method for solving optimization problems is used for the search for a global maximum of a quadratic function on a parallelepiped. The approximating functions in this method are majorants of an object function. The majorants are constructed on subsets of parallelepiped of admissible solutions. The method is based on a diagonal or block-diagonal $LDL^T$-factorization of a matrix of an object function.
@article{SJVM_2008_11_1_a5,
     author = {E. A. Kotel'nikov},
     title = {Non-convex quadratic optimization on a~parallelepiped},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {69--81},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2008_11_1_a5/}
}
TY  - JOUR
AU  - E. A. Kotel'nikov
TI  - Non-convex quadratic optimization on a~parallelepiped
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2008
SP  - 69
EP  - 81
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2008_11_1_a5/
LA  - ru
ID  - SJVM_2008_11_1_a5
ER  - 
%0 Journal Article
%A E. A. Kotel'nikov
%T Non-convex quadratic optimization on a~parallelepiped
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2008
%P 69-81
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2008_11_1_a5/
%G ru
%F SJVM_2008_11_1_a5
E. A. Kotel'nikov. Non-convex quadratic optimization on a~parallelepiped. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 1, pp. 69-81. http://geodesic.mathdoc.fr/item/SJVM_2008_11_1_a5/

[1] Strekalovskii A. S., Elementy nevypukloi optimizatsii, Nauka, Novosibirsk, 2003

[2] Khachaturov V. R., Matematicheskie metody regionalnogo programmirovaniya, Nauka, M., 1989 | MR | Zbl

[3] Kotelnikov E. A., “Poisk globalnogo maksimuma kvadratichnoi funktsii pri lineinykh ogranicheniyakh”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 7:4 (2004), 327–334

[4] Kovalev M. M., Diskretnaya optimizatsiya (tselochislennoe programmirovanie), Izd-vo Belorusskogo universiteta, Minsk, 1977 | MR | Zbl

[5] Driebeek N. J., “An algorithm for the solution of mixed-integer problems”, Management Science, 12 (1966), 576–587 | DOI

[6] Tomlin J. A., “Branch and bound methods for integer and non-convex programming”, Integer and Nonlinear Programming, ed. J. Abadie, Amsterdam, 1970, 437–450 | MR | Zbl

[7] Gill P. E., Murray W., “Quasi-Newton methods for unconstrained optimization”, J. Inst. Maths. Applics, 9 (1972), 91–108 | DOI | MR | Zbl

[8] Golub D., Van Loun Ch., Matrichnye vychisleniya, Mir, M., 1999

[9] Murtaf B., Sovremennoe lineinoe programmirovanie. Teoriya i praktika, Mir, M., 1984 | MR

[10] Fletcher R., “An ideal penalty function for constrained optimization”, J. Inst. Maths. Applics, 16 (1975), 319–342 | DOI | MR

[11] Cute models, , (AMPL models were created by Hande Yurttan Benson) http://www.sor.princeton.edu/?rvdb/ampl/nlmodels/cute/