Numerical solution of the inverse problem for the polarized-radiation transfer equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 1, pp. 55-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, an inverse problem for the time-independent vector transfer equation for polarized radiation in an isotropic medium is studied. In this problem, it is required to find the attenuation factor from a known solution of the equation at the medium interface. An approach, based on using special external radiative sources, is proposed for solving this problem. A formula is derived which relates the Radon transform of the attenuation factor with the radiation-flux density at the boundary. The numerical experiments have shown an advantage of the algorithm for the polarized-radiation transfer equation over the one for scalar case.
@article{SJVM_2008_11_1_a4,
     author = {A. E. Kovtanyuk and I. V. Prokhorov},
     title = {Numerical solution of the inverse problem for the polarized-radiation transfer equation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {55--68},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2008_11_1_a4/}
}
TY  - JOUR
AU  - A. E. Kovtanyuk
AU  - I. V. Prokhorov
TI  - Numerical solution of the inverse problem for the polarized-radiation transfer equation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2008
SP  - 55
EP  - 68
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2008_11_1_a4/
LA  - ru
ID  - SJVM_2008_11_1_a4
ER  - 
%0 Journal Article
%A A. E. Kovtanyuk
%A I. V. Prokhorov
%T Numerical solution of the inverse problem for the polarized-radiation transfer equation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2008
%P 55-68
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2008_11_1_a4/
%G ru
%F SJVM_2008_11_1_a4
A. E. Kovtanyuk; I. V. Prokhorov. Numerical solution of the inverse problem for the polarized-radiation transfer equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 1, pp. 55-68. http://geodesic.mathdoc.fr/item/SJVM_2008_11_1_a4/

[1] Chandrasekar S., Perenos luchistoi energii, IL, M., 1953

[2] Rozenberg G. V., “Vektor-parametr Stoksa”, Uspekhi fiz. nauk, 56:1 (1955), 77–109

[3] Sobolev V. V., Perenos luchistoi energii v atmosferakh zvezd i planet, GITTL, M., 1956

[4] Sushkevich T. A., Matematicheskie modeli perenosa izlucheniya, BINOM. Laboratoriya znanii, M., 2006

[5] Marchuk G. I., Mikhailov G. A., Nazarliev M. A. i dr., Metod Monte-Karlo v atmosfernoi optike, Nauka, Novosibirsk, 1976 | Zbl

[6] Germogenova T. A., Konovalov N. V., Kuzmina M. G., “Osnovy matematicheskoi teorii perenosa polyarizovannogo izlucheniya (strogie rezultaty)”, Tr. Vsesoyuzn. simpoziuma “Printsip invariantnosti i ego prilozheniya” (Byurakan, 1981), Izd-vo AN ArmSSR, Erevan, 1989, 271–284

[7] Mikhailov G. A., Ukhinov S. A., Chimaeva A. S., “Dispersiya standartnoi vektornoi otsenki metoda Monte-Karlo v teorii perenosa polyarizovannogo izlucheniya”, Zhurn. vychisl. matem. i mat. fiziki, 46:11 (2006), 2099–2113 | MR

[8] Sushkevich T. A., Strelkov S. A., Maksakova S. V., “Matematicheskaya model perenosa polyarizovannogo izlucheniya”, Matem. modelirovanie, 10:7 (1998), 61–75 | MR

[9] Siewert C. E., “Determination of the single scattering albedo from polarization measurements of the rayleigh atmosphere”, Astrophysics and Space Sciences, 60 (1979), 237–239 | DOI

[10] Siewert C. E., “Solution an inverse problem in radiative transfer with polarization”, J. Quant. Spectrosc. Radiat. Transfer, 30:6 (1983), 523–526 | DOI | MR

[11] Ukhinov S. A., Yurkov D. I., “Computation of the parametric derivatives of polarized radiation and the solution of inverse atmospheric optics problems”, Rus. J. Numer. Anal. Math. Modelling, 17:3 (2002), 283–303 | MR | Zbl

[12] Anikonov D. S., Prokhorov I. V., “Opredeleniya koeffitsienta uravneniya perenosa pri energeticheskikh i uglovykh osobennostyakh vneshnego izlucheniya”, DAN, 327:2 (1992), 205–207 | MR | Zbl

[13] Anikonov D. S., Prokhorov I. V., Kovtanyuk A. E., “Investigation of scattering and absorbing media by the methods of X-ray tomography”, J. Inverse and Ill-Posed Problems, 1:4 (1993), 259–281 | DOI | MR | Zbl

[14] Anikonov D. S., Kovtanyuk A. E., and Prokhorov I. V., Transport equation and tomography, VSP, Utrecht–Boston, 2002 | MR

[15] Kovtanyuk A. E., Prokhorov I. V., “Tomography problem for the polarized-radiation transfer equation”, J. Inverse and Ill-Posed Problems, 14:6 (2006), 1–12 | MR

[16] Germogenova T. A., Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR | Zbl

[17] Vladimirov V. S., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN SSSR, 61, 1961, 3–158

[18] Anikonov D. S., Nazarov V. G., and Prokhorov I. V., Poorly visible media in X-Ray tomography, VSP, Utrecht–Boston, 2002

[19] Khachaturov A. A., “Opredelenie znacheniya mery dlya oblasti $n$-mernogo evklidovogo prostranstva po ee znacheniyam dlya vsekh poluprostranstv”, Uspekhi mat. nauk, 9:3(61) (1954), 205–212 | MR | Zbl

[20] Natterer F., The mathematics of computerized tomography, B. G. Teubner and John Wiley Sons, Stuttgart, 1986 | MR | Zbl