Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2008_11_1_a3, author = {S. I. Kabanikhin and A. Kh. Khasanov and A. V. Penenko}, title = {The gradient-based method for solving the inverse coefficient heat-conduction problem}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {41--51}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2008_11_1_a3/} }
TY - JOUR AU - S. I. Kabanikhin AU - A. Kh. Khasanov AU - A. V. Penenko TI - The gradient-based method for solving the inverse coefficient heat-conduction problem JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2008 SP - 41 EP - 51 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2008_11_1_a3/ LA - ru ID - SJVM_2008_11_1_a3 ER -
%0 Journal Article %A S. I. Kabanikhin %A A. Kh. Khasanov %A A. V. Penenko %T The gradient-based method for solving the inverse coefficient heat-conduction problem %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2008 %P 41-51 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2008_11_1_a3/ %G ru %F SJVM_2008_11_1_a3
S. I. Kabanikhin; A. Kh. Khasanov; A. V. Penenko. The gradient-based method for solving the inverse coefficient heat-conduction problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 1, pp. 41-51. http://geodesic.mathdoc.fr/item/SJVM_2008_11_1_a3/
[1] Lavrentev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR
[2] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Ekstremalnye metody resheniya nekorrektnykh zadach, Nauka, M., 1988 | MR | Zbl
[3] Hao D., Methods for inverse heat conduction problems, Peter Lang pub Inc., 1998 | MR | Zbl
[4] Isakov V., Kindermann S., “Identification of the diffusion coefficient in a one-dimensional parabolic equation”, Inverse problems, 16 (2000), 665–680 | DOI | MR | Zbl
[5] Lishang J., Youshan T., “Identifying the volatility of underlying assets from option prices”, Inverse problems, 17 (2001), 137–155 | DOI | MR | Zbl
[6] Plotnikov V. I., “Teoremy edinstvennosti, suschestvovaniya i apriornye svoistva obobschennykh reshenii”, DAN SSSR, 165 (1965), 1405–1407 | MR | Zbl
[7] Hasanov A., DuChateau P. and Pektas B., “An adjoint problem approach and coarse-fine mesh method for identification of the diffusion coefficient in a linear parabolic equation”, J. of Inverse and Ill-Posed Problems, 14:4 (2006), 1–29 | MR
[8] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR
[9] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl
[10] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl