The gradient-based method for solving the inverse coefficient heat-conduction problem
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 1, pp. 41-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

An iterative gradient descent method has been applied to the inverse coefficient heat-conduction problem with overdetermined boundary conditions. Some theoretical estimates have been obtained for variation of the target functional with respect to the variation of the coefficient. Using these estimates, an approximated gradient of the target functional has been constructed. In the numerical experiments, the iteration convergence rates for different gradient descent parameters were compared.
@article{SJVM_2008_11_1_a3,
     author = {S. I. Kabanikhin and A. Kh. Khasanov and A. V. Penenko},
     title = {The gradient-based method for solving the inverse coefficient heat-conduction problem},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {41--51},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2008_11_1_a3/}
}
TY  - JOUR
AU  - S. I. Kabanikhin
AU  - A. Kh. Khasanov
AU  - A. V. Penenko
TI  - The gradient-based method for solving the inverse coefficient heat-conduction problem
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2008
SP  - 41
EP  - 51
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2008_11_1_a3/
LA  - ru
ID  - SJVM_2008_11_1_a3
ER  - 
%0 Journal Article
%A S. I. Kabanikhin
%A A. Kh. Khasanov
%A A. V. Penenko
%T The gradient-based method for solving the inverse coefficient heat-conduction problem
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2008
%P 41-51
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2008_11_1_a3/
%G ru
%F SJVM_2008_11_1_a3
S. I. Kabanikhin; A. Kh. Khasanov; A. V. Penenko. The gradient-based method for solving the inverse coefficient heat-conduction problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 1, pp. 41-51. http://geodesic.mathdoc.fr/item/SJVM_2008_11_1_a3/

[1] Lavrentev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR

[2] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Ekstremalnye metody resheniya nekorrektnykh zadach, Nauka, M., 1988 | MR | Zbl

[3] Hao D., Methods for inverse heat conduction problems, Peter Lang pub Inc., 1998 | MR | Zbl

[4] Isakov V., Kindermann S., “Identification of the diffusion coefficient in a one-dimensional parabolic equation”, Inverse problems, 16 (2000), 665–680 | DOI | MR | Zbl

[5] Lishang J., Youshan T., “Identifying the volatility of underlying assets from option prices”, Inverse problems, 17 (2001), 137–155 | DOI | MR | Zbl

[6] Plotnikov V. I., “Teoremy edinstvennosti, suschestvovaniya i apriornye svoistva obobschennykh reshenii”, DAN SSSR, 165 (1965), 1405–1407 | MR | Zbl

[7] Hasanov A., DuChateau P. and Pektas B., “An adjoint problem approach and coarse-fine mesh method for identification of the diffusion coefficient in a linear parabolic equation”, J. of Inverse and Ill-Posed Problems, 14:4 (2006), 1–29 | MR

[8] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR

[9] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[10] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl