Mathematical modeling of formation of doping nanostructures in basic material (nanotechnologies for microelectronics)
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 4, pp. 401-416.

Voir la notice de l'article provenant de la source Math-Net.Ru

Physical-chemical processes, which constitute the basis of one of segments of a technological cycle for designing new semiconductor materials for nanoelectronics, were numerically simulated. This production stage – the burning of basic material (Si, Ti or Ge) in oxygen – is intended for the formation of special nanostructures of donor (P, As or Sb) and acceptor (B, Ga or Al) dopings regularly distributed in the basic material before starting the burning. In this paper, investigation of the growth of dynamics of an oxide film and the study of redistribution of dopings by physical-chemical processes of segregation on “oxide/material” wave front is carried out for some version of employed configurations of the base surface (“trench”) partly closed by protecting masks, which preserve some segments of the surface from oxidation. The distributions of doping concentration, with generation of different domains, including specific nanostructures – short-located zones (60–80 nm) of elevated concentrations of the donor and the acceptor dopings, are obtained and analyzed. These nanostructures of the donor and the acceptor dopings in the base provide the required semiconductor electrophysical properties of material.
@article{SJVM_2007_10_4_a6,
     author = {G. A. Tarnavskii and A. V. Aliev and A. G. Tarnavskii},
     title = {Mathematical modeling of formation of doping nanostructures in basic material (nanotechnologies for microelectronics)},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {401--416},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_4_a6/}
}
TY  - JOUR
AU  - G. A. Tarnavskii
AU  - A. V. Aliev
AU  - A. G. Tarnavskii
TI  - Mathematical modeling of formation of doping nanostructures in basic material (nanotechnologies for microelectronics)
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2007
SP  - 401
EP  - 416
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2007_10_4_a6/
LA  - ru
ID  - SJVM_2007_10_4_a6
ER  - 
%0 Journal Article
%A G. A. Tarnavskii
%A A. V. Aliev
%A A. G. Tarnavskii
%T Mathematical modeling of formation of doping nanostructures in basic material (nanotechnologies for microelectronics)
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2007
%P 401-416
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2007_10_4_a6/
%G ru
%F SJVM_2007_10_4_a6
G. A. Tarnavskii; A. V. Aliev; A. G. Tarnavskii. Mathematical modeling of formation of doping nanostructures in basic material (nanotechnologies for microelectronics). Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 4, pp. 401-416. http://geodesic.mathdoc.fr/item/SJVM_2007_10_4_a6/

[1] Pakhomov S. A., “Proizvodstvo mikroprotsessorov Intel”, Kompyuter Press, 2002, no. 4, 33–35 | MR

[2] Deal B. E., Grove A. S., “General relationship for the thermal oxidation of silicon”, Appl. Phys., 36 (1965), 37–70

[3] Ho C. P., Plumber J. D., “$Si/SiO_2$ interface oxidation kinetica: a physical model of high ubstrate doping levels”, J. Electrochem. Sos., 126:9 (1979), 1516–1522 | DOI

[4] Vul A. Ya., Makarova T. L., Osipov V. Yu., Zinchik Yu. S., Boitsov S. K., “Kinetika okisleniya kremniya i struktura okisnykh sloev tolschinoi menee 50 angstrem”, Fizika i tekhnika poluprovodnikov, 26:1 (1992), 111–121

[5] Senez V., Fereiza P., Baccus A., “Two-dimensional simulation of local oxidation of silicon: calibrated viscoelastic flow analysis”, IEEE Trans. Elec. Dev., 43:5 (1996), 720–731 | DOI

[6] Blokhin A. M., Bushmanov R. S., Romano V., “Asymptotic stability of the equilibrium state for the acroscopic balance equations of charge transport in semiconductors”, Computational Technologies, 8:3 (2003), 7–22 | Zbl

[7] Blokhin A. M., Bushmanova A. S., Romano V., “Stability of the equilibrium state for a hydrodynamical model of charge transport in semiconductors”, Z. Angew. Math. Phys., 52 (2001), 476–499 | DOI | MR | Zbl

[8] Aleksandrov A. L., Tarnavskii G. A., Shpak S. I., Gulidov A. S., Obrekht M. S., “Chislennoe modelirovanie zadachi dinamiki rosta plenki okisla v poluprovodnikovykh podlozhkakh na osnove geometricheskogo podkhoda i metoda Dila–Grouva”, Vychislitelnye metody i programmirovanie, 2:1 (2001), 92–111

[9] Tarnavskii G. A., Shpak S. I., Obrekht M. S., “Chislennoe modelirovanie i kompyuternyi algoritm protsessa segregatsii legiruyuschikh primesei na granitse volny okisleniya v poluprovodnikovykh podlozhkakh”, Vychislitelnye metody i programmirovanie, 2:1 (2001), 12–26

[10] Tarnavskii G. A., Shpak S. I., Obrekht M. S., “Segregatsiya bora, implantirovannogo v kremnii, na uglovykh konfiguratsiyakh volny okisleniya kremnii/dvuokis kremniya”, Zhurn. eksperimentalnoi i teoreticheskoi fiziki (Pisma), 73:9–10 (2001), 536–541

[11] Tarnavskii G. A., Shpak S. I., Obrekht M. S., “Osobennosti segregatsii legiruyuschikh primesei elementov V(a)-podgruppy na uglovykh konfiguratsiyakh granitsy okisleniya “kremnii/dvuokis kremniya””, Inzhenerno-fizicheskii zhurn., 75:1 (2002), 142–147 | MR