The two-dimensional GPR modeling for near-surface investigation using the Dirichlet--Neumann boundary condition combination
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 4, pp. 385-399.

Voir la notice de l'article provenant de la source Math-Net.Ru

We have developed an algorithm to simulate a Ground Penetrating Radar (GPR) survey responses in the two-dimensional (2D) geological media using a finite element numerical method (FEM). The scalar transverse electric mode of Maxwell's wave equation was simulated utilizing a combination of the Dirichlet and the Neumann boundary conditions. Immediately, the program designed was used to analyze various survey situations, observing such effects as antenna frequencies selection, pipes and buried tanks locations and karst cavities detection in limestone. Several pipes configurations were studied, mainly those filled with fresh water, salt water, oil and air. Thus, all these tests permitted us to conclude that the target size and conductivity change the hyperbolic pattern of the GPR response, and, the shape of the tails gives a measure of velocity and depth. In this form, we have shown how efficient GPR is to map the underground conditions and their benefits to environmental and hydrogeological studies. The results obtained allow us to perform all kinds of the 2D models using smaller meshes, which traduce in faster calculations, and, in this form, to select optimal parameters and conditions to provide more information, which can potentially help us to develop better field surveys and, consequently, to obtain better interpretations.
@article{SJVM_2007_10_4_a5,
     author = {J. DA Silva and A. Carrasquilla and V. Priimenko},
     title = {The two-dimensional {GPR} modeling for near-surface investigation using the {Dirichlet--Neumann} boundary condition combination},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {385--399},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_4_a5/}
}
TY  - JOUR
AU  - J. DA Silva
AU  - A. Carrasquilla
AU  - V. Priimenko
TI  - The two-dimensional GPR modeling for near-surface investigation using the Dirichlet--Neumann boundary condition combination
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2007
SP  - 385
EP  - 399
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2007_10_4_a5/
LA  - en
ID  - SJVM_2007_10_4_a5
ER  - 
%0 Journal Article
%A J. DA Silva
%A A. Carrasquilla
%A V. Priimenko
%T The two-dimensional GPR modeling for near-surface investigation using the Dirichlet--Neumann boundary condition combination
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2007
%P 385-399
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2007_10_4_a5/
%G en
%F SJVM_2007_10_4_a5
J. DA Silva; A. Carrasquilla; V. Priimenko. The two-dimensional GPR modeling for near-surface investigation using the Dirichlet--Neumann boundary condition combination. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 4, pp. 385-399. http://geodesic.mathdoc.fr/item/SJVM_2007_10_4_a5/

[1] Baumann C. C., Sampaio E. S., “Electric field of a horizontal antenna above a homogeneous half space: implication for GPR”, Geophysics, 65:3 (2000), 823–835 | DOI

[2] Brewster M. L., Observed migration of a controlled DNAPL release by ground penetrating radar, M.Sc. Thesis, University of Waterloo, 1993

[3] Davies A. L., The Finite Element Method: a First Approach, Claredon Press, 1980 | MR | Zbl

[4] Davis J. C., Annan A. P., “Ground penetrating radar for high-resolution mapping of soil and rock stratigraphy”, Geophysical Prospecting, 37:5 (1989), 531–551 | DOI

[5] Fisher E., Mcmechan G. A., Annan A. P., “Acquisition and processing of wide aperture ground penetrating radar data”, Geophysics, 57:3 (1992), 495–511 | DOI

[6] Oden J. T., Reddy J. N., An Introduction to the Mathematical Theory of Finite Elements, John Wiley Sons, 1976 | MR | Zbl

[7] Smith W. D., “A nonreflecting plane boundary for wave propagation problems”, J. Computational Physics, 15 (1974), 492–503 | DOI | Zbl

[8] Zhdanov M. S., Varentsov I. M., Weaver J. T., Golubev J. T., Krylov J. T., “Methods for modeling electromagnetic fields. Results from COMMEMI the international project on the comparison of modeling methods for electromagnetic induction”, J. of Applied Geophysics, 37 (1997), 133–271 | DOI