The Rayleigh--Benard convection in gas with chemical reactions
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 4, pp. 371-383.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the Rayleigh–Benard convection for a chemical equilibrium gas is solved numerically. The gas is assumed to be incompressible, and the layer boundaries are assumed to be flat, isothermal, and free from the shear stress. The Boussinesq model with the coefficient at the buoyancy term depending on the transverse coordinate is used. The resultant nonlinear system of equations is solved by a previously developed numerical method based on the spectral representation of vorticity and temperature fields. Convection in incompressible gas is impossible. But, as is shown here, in an incompressible gas with chemical reactions, convection is possible owing to the anomalous dependence of the thermal expansion coefficient on temperature. Linear analysis shows that the critical Rayleigh number is essentially decreasing at a low pressure. The instability domain spreads toward higher temperatures as the pressure increases. By the numerical method, various convection nonlinear modes are obtained: stationary, periodic, quasi-periodic, and stochastic convection. The proposed model of convection of a chemical equilibrium gas can be useful for the understanding of the transition of a cellular combustion of surface systems into an explosion (initiation of the surface detonation) and for the calculation of operating modes of chemical reactors.
@article{SJVM_2007_10_4_a4,
     author = {I. B. Palymskiy and P. A. Fomin and H. Hieronymus},
     title = {The {Rayleigh--Benard} convection in gas with chemical reactions},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {371--383},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_4_a4/}
}
TY  - JOUR
AU  - I. B. Palymskiy
AU  - P. A. Fomin
AU  - H. Hieronymus
TI  - The Rayleigh--Benard convection in gas with chemical reactions
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2007
SP  - 371
EP  - 383
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2007_10_4_a4/
LA  - en
ID  - SJVM_2007_10_4_a4
ER  - 
%0 Journal Article
%A I. B. Palymskiy
%A P. A. Fomin
%A H. Hieronymus
%T The Rayleigh--Benard convection in gas with chemical reactions
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2007
%P 371-383
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2007_10_4_a4/
%G en
%F SJVM_2007_10_4_a4
I. B. Palymskiy; P. A. Fomin; H. Hieronymus. The Rayleigh--Benard convection in gas with chemical reactions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 4, pp. 371-383. http://geodesic.mathdoc.fr/item/SJVM_2007_10_4_a4/

[1] Plewinsky B., Wegener W., Herrmann K. P., “Surface detonations and indirect ignition processes”, Progress in Astronautics and Aeronautics, 133 (1990), 279–294

[2] Hieronymus H., Hofmann M., Bender J., Henschen Ph., Wendler R., Plewinsky B., Steinbach J., “Characterization of surface explosions”, Archivum Combustionis, 21:2 (2001), 117–125

[3] Palymskiy I. B., “Determinism and chaos in the Rayleigh-Benard Convection”, Proc. of Second Int. Conf. on Applied Mechanics and Materials (ICAMM 2003) (21–23 January 2003), Durban, South Africa, 139–144

[4] Palymskiy I. B., “Direct numerical simulation of convective turbulence”, Progress in Computational Heat and Mass Transfer, Proc. of the Fourth Int. Conf. on Computational Heat and Mass Transfer (ICCHMT'05). Vol. 1 (17–20 May 2005), Paris, France, 101–107 | MR

[5] Palymskiy I. B., “Direct numerical simulation of turbulent convection”, Finite Volumes for Complex Applications IV – Problems and Perspectives, Proc. of the Fourth Int. Symposium on Finite Volumes for Complex Applications – Problems and Perspectives (FVCA4) (4–8 July 2005, Marrakech, Morocco), ed. F. Benkhaldoun, Lavoisier, 643–654 | MR

[6] Nikolaev Yu. A., “Model of the kinetics of chemical reactions at high temperatures, combustion”, Explosion and Shock Waves, 14:4 (1978), 468–471 | DOI

[7] Nikolaev Yu. A., Fomin P. A., “Analysis of equilibrium flows of chemically reacting gases”, Combustion, Explosion and Shock Waves, 18:1 (1982), 53–58 | DOI | MR

[8] Nikolaev Yu. A., Zak D. V., “Agreement of models of chemical reactions in gases with the second law of thermodynamics”, Combustion, Explosion and Shock Waves, 24:4 (1988), 461–464 | DOI | MR

[9] Fomin P. A., Trotsyuk A. V., “An approximate calculation of the isentrope of a gas in chemical equilibrium”, Combustion, Explosion and Shock Waves, 31:4 (1995), 455–457 | DOI

[10] Palymskiy I. B., “Metod Chislennogo Modelirovaniya Konvektivnykh Techenij”, Vichislitel'nye Tekhnologii, 5:6 (2000), 53–61 (In Russian); http://palymsky.narod.ru/

[11] Gershuni G. Z., Zhukhovitskii E. M., Convective stability of incompressible fluids, Israel Program for Scientific Translations, Jerusalem, 1976

[12] Palymskiy I. B., “Linear and nonlinear analysis of the numerical method for the calculation of convective flows”, Siberian J. Num. Math. / Sib. Branch of Russ. Acad. of Sci. — Novosibirsk, 7:2 (2004), 143–163 (In Russian) ; http://palymsky.narod.ru/ | Zbl

[13] Farhadien R., Tankin R. S., “Interferometric study of two-dimensional Benard convection”, J. of Fluid Mechanics, 66:4 (1974), 739–752 | DOI

[14] Fitzjarrald D. E., “An experimental study of turbulent convection in air”, J. of Fluid Mechanics, 73 (1976), 693–719 | DOI

[15] Kerr R. M., “Rayleigh number scaling in numerical convection”, J. of Fluid Mechanics, 310 (1996), 139–179 | DOI | Zbl

[16] Crownover R. M., Introduction to Fractals and Chaos, Jones and Bartlett Publisher, London, 1995