Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2007_10_3_a1, author = {S. A. Gusev}, title = {Solving {SDE's} numerically to estimate parametric derivatives of the solution to a~parabolic boundary value problem with {a~Neumann} boundary condition}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {237--246}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_3_a1/} }
TY - JOUR AU - S. A. Gusev TI - Solving SDE's numerically to estimate parametric derivatives of the solution to a~parabolic boundary value problem with a~Neumann boundary condition JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2007 SP - 237 EP - 246 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2007_10_3_a1/ LA - ru ID - SJVM_2007_10_3_a1 ER -
%0 Journal Article %A S. A. Gusev %T Solving SDE's numerically to estimate parametric derivatives of the solution to a~parabolic boundary value problem with a~Neumann boundary condition %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2007 %P 237-246 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2007_10_3_a1/ %G ru %F SJVM_2007_10_3_a1
S. A. Gusev. Solving SDE's numerically to estimate parametric derivatives of the solution to a~parabolic boundary value problem with a~Neumann boundary condition. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 3, pp. 237-246. http://geodesic.mathdoc.fr/item/SJVM_2007_10_3_a1/
[1] Skorokhod A. V., “Stokhasticheskie uravneniya dlya diffuzionnykh protsessov v ogranichennoi oblasti. Chast 1”, Teoriya veroyatnostei i ee primeneniya, 6 (1961), 264–274 ; Часть 2, Теория вероятностей и ее применения, 7 (1962), 3–23 | Zbl | Zbl
[2] Tanaka H., “Stochastic differential equations with reflected boundary condition in convex regions”, Hiroshima Math. J., 9 (1979), 163–177 | MR | Zbl
[3] Lions P. L., Sznitman A. S., “Stochastic differential equations with reflected boundary conditions”, Comm. Pure Appl. Math., 37 (1984), 511–537 | DOI | MR | Zbl
[4] Saisho Y., “Stochastic differential equations for multi-dimensional domain with reflecting boundary”, Probab. Theory Rel. Fields, 74 (1987), 455–477 | DOI | MR | Zbl
[5] Slominski L., “On approximation of solutions of multidimensional stochastic differential equations with reflecting boundary conditions”, Stochastic Processes and their Applications, 50 (1994), 197–220 | DOI | MR
[6] Slominski L., “Some remarks on approximation of solutions of SDE's with reflecting boundary conditions”, Mathematics and Computers in Simulation, 38 (1995), 109–117 | DOI | MR | Zbl
[7] Milshtein G. N., “Primenenie chislennogo integrirovaniya stokhasticheskikh uravnenii dlya resheniya kraevykh zadach s granichnymi usloviyami Neimana”, Teoriya veroyatnostei i ee primeneniya, 41:1 (1996), 210–218 | MR | Zbl
[8] Bossy M., Gobet E., Talay D., “Symmetrized Euler scheme for an efficient approximation of reflected diffusions”, J. Appl. Probab., 41:3 (2004), 877–889 | DOI | MR | Zbl
[9] Costantini C., Pacchiarotti P., Sartoretto F., “Numerical approximation for functionals for reflected diffusion processes”, SIAM J. Appl. Math., 58:1 (1998), 73–102 | DOI | MR | Zbl
[10] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967
[11] Gobet E., “Weak approximation of killed diffusion using Euler schemes”, Stochastic Processes and their Applications, 87 (2000), 167–197 | DOI | MR | Zbl