Solving SDE's numerically to estimate parametric derivatives of the solution to a~parabolic boundary value problem with a~Neumann boundary condition
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 3, pp. 237-246

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a parabolic boundary value problem with a Neumann boundary condition is considered. The diffusion process with reflection from the boundary corresponds to the boundary problem. A statistical method to estimate the solution and parametric derivatives of the considered problem is proposed. This method is based on solving SDE's by the Euler method. The order of convergence of the obtained estimates is established. The results of numerical computations are presented.
@article{SJVM_2007_10_3_a1,
     author = {S. A. Gusev},
     title = {Solving {SDE's} numerically to estimate parametric derivatives of the solution to a~parabolic boundary value problem with {a~Neumann} boundary condition},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {237--246},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_3_a1/}
}
TY  - JOUR
AU  - S. A. Gusev
TI  - Solving SDE's numerically to estimate parametric derivatives of the solution to a~parabolic boundary value problem with a~Neumann boundary condition
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2007
SP  - 237
EP  - 246
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2007_10_3_a1/
LA  - ru
ID  - SJVM_2007_10_3_a1
ER  - 
%0 Journal Article
%A S. A. Gusev
%T Solving SDE's numerically to estimate parametric derivatives of the solution to a~parabolic boundary value problem with a~Neumann boundary condition
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2007
%P 237-246
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2007_10_3_a1/
%G ru
%F SJVM_2007_10_3_a1
S. A. Gusev. Solving SDE's numerically to estimate parametric derivatives of the solution to a~parabolic boundary value problem with a~Neumann boundary condition. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 3, pp. 237-246. http://geodesic.mathdoc.fr/item/SJVM_2007_10_3_a1/