Modeling the kinetics behind the patients flow
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 3, pp. 229-235.

Voir la notice de l'article provenant de la source Math-Net.Ru

In many practical applications, such as modeling the patients flow through a hospital, the dynamical system under consideration is described by a compartmental network system. A law of mass conservation governs this kinetic system, the instantaneous flow balances around the compartments are expressed by first order differential equations, and the state variables are constrained to remain non-negative along the system trajectories. The aim of this paper is to develop a compartmental kinetic model of the patients flow, providing a reliable picture of the dynamics behind the movement of patients. The snapshot of the modeled health care system on short or even medium-term will enable the hospital staff to simulate in vitro different scenarios and help them to make an optimum decision.
@article{SJVM_2007_10_3_a0,
     author = {M. Gorunescu and F. Gorunescu},
     title = {Modeling the kinetics behind the patients flow},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {229--235},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_3_a0/}
}
TY  - JOUR
AU  - M. Gorunescu
AU  - F. Gorunescu
TI  - Modeling the kinetics behind the patients flow
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2007
SP  - 229
EP  - 235
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2007_10_3_a0/
LA  - en
ID  - SJVM_2007_10_3_a0
ER  - 
%0 Journal Article
%A M. Gorunescu
%A F. Gorunescu
%T Modeling the kinetics behind the patients flow
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2007
%P 229-235
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2007_10_3_a0/
%G en
%F SJVM_2007_10_3_a0
M. Gorunescu; F. Gorunescu. Modeling the kinetics behind the patients flow. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 3, pp. 229-235. http://geodesic.mathdoc.fr/item/SJVM_2007_10_3_a0/

[1] Bastin G., Guffens V., “Congestion control in compartmental network systems”, Systems and Control Letters, 55:8 (2006), 689–696 | DOI | MR | Zbl

[2] Farina L., Rinaldi S., Positive Linear Systems. Theory and Applications, Wiley, 2000 | MR

[3] Harrison G. W., Millard P. H., “Balancing acute and long-stay care: the mathematics of throughput in departments of geriatric medicine”, Methods of Information in Medicine, 30 (1991), 221–228

[4] Irvine V., McClean S., Millard P., “Stochastic models for geriatric in-patient behaviour”, IMA J. Math. Appl. Medicine and Biology, 11 (1994), 207–216 | DOI | Zbl

[5] Hirsch M. W., “Systems of differential equations that are competitive or cooperative. II. Convergence almost everywhere”, SIAM Journal of Mathematical Analysis, 16 (1985), 423–439 | DOI | MR | Zbl

[6] Iserles A., A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, Cambridge, 1996 | MR | Zbl

[7] Jacquez J. A., Simon C. P., “Qualitative Theory of Compartmental Systems”, SIAM Review, 35:1 (1993), 43–79, March | DOI | MR | Zbl

[8] Ladde G. S., “Cellular Systems–II. Stability of Compartmental Systems”, Mathematical Biosciences, 30 (1976), 1–21 | DOI | MR | Zbl

[9] Makoid M., Vuchetich P., Cobby J., Basic Pharmacokinetics, Copyright \copyright 1996–2000 Michael C. Makoid

[10] Sandberg I. W., “On the Mathematical Foundations of Compartmental Analysis in Biology, Medicine, and Ecology”, IEEE Transactions on Circuits and Systems, 25 (1978), 273–279 | DOI | MR | Zbl

[11] Strand S. E., Zanzonico P., Johnson T. K., “Pharmacokinetic modeling”, Medical Physics, 20 (1993), 515–527 | DOI

[12] Zwillinger D., Handbook of Differential Equations, 3rd. edition, Academic Press, Boston, 1997 | MR