On precise edges of polynomials
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 2, pp. 195-208.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper discusses definitions of precise edges of polynomial functions at infinitely distant points $(x_0,y_0)$. It has been found that the limit equalities at these points are necessary conditions: $$ \lim_{x\to x_0,\,y\to y_0}f'_x(x,y)=0,\quad \lim_{x\to x_0,\,y\to y_0}f'_y(x,y)=0,\quad \lim _{x\to x_0,\,y\to y_0}(xf'_x(x,y)+yf'_y(x,y))=0. $$ This allows one to obtain both finite and limit solutions of the system of necessary extremum conditions. The most typical properties of the polynomials, which have their precise edges, as well as the largest and the smallest values of polynomials at infinitely distant points have been revealed. An algorithm of finding the precise edges, which is based on constructing a parametric solution for a system of nonlinear equations, has been developed. The problems to be solved are reduced to some simpler, analysis by applying the aids of computer algebraaimed at determination of the largest and the smallest values of polynomials. The corresponding examples are given.
@article{SJVM_2007_10_2_a6,
     author = {M. A. Novikov},
     title = {On precise edges of polynomials},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {195--208},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a6/}
}
TY  - JOUR
AU  - M. A. Novikov
TI  - On precise edges of polynomials
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2007
SP  - 195
EP  - 208
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a6/
LA  - ru
ID  - SJVM_2007_10_2_a6
ER  - 
%0 Journal Article
%A M. A. Novikov
%T On precise edges of polynomials
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2007
%P 195-208
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a6/
%G ru
%F SJVM_2007_10_2_a6
M. A. Novikov. On precise edges of polynomials. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 2, pp. 195-208. http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a6/

[1] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. 1, Nauka, M., 1966

[2] Uteshev A. Yu., Cherkasov T. M., “K zadache polinomialnoi optimizatsii”, DAN RAN, 361:2 (1998), 168–170 | MR | Zbl

[3] Uteshev A.Yu., Cherkasov T.M., “Lokalizatsiya resheniya sistem algebraicheskikh uravnenii i neravenstv. Metod Ermita”, DAN RAN, 347:4 (1996), 451–453 | MR | Zbl

[4] Uteshev A., “Ju Localization of Roots of a Polinomial not Represented in Canonical Form”, Computer Algebra in Scientific Computing. CASC'99, eds. V. G. Ganzha, E. W. Mayr and E. V. Vorozhtsov, Springer-Verlag, 1999, 431–440 | MR | Zbl

[5] Van der Varden, Sovremennaya algebra, T. 2, ONTI NKTP SSSR, M.–L., 1937

[6] Devenport Dzh., Sire I., Turne E., Kompyuternaya algebra, Mir, M., 1991 | MR

[7] Wolfram S., Mathematica: A System for Doing Mathematics by Computer, Addison-Wesley Publ. Co., New-York, 1988 | Zbl

[8] Zorkaltsev V. I., Popov L. D., Sovremennye metody optimizatsii i ikh prilozheniya k modelyam energetiki, Nauka, Novosibirsk, 2003

[9] Shapiro G. M., Vysshaya algebra, Uchpedgiz, M., 1937

[10] Uoker R., Algebraicheskie krivye, IL, M., 1962

[11] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979 | MR

[12] Soleev A., “Vydelenie vetvei analiticheskoi krivoi i mnogogranniki Nyutona”, DAN SSSR, 268:6 (1983), 1305–1307 | MR | Zbl

[13] Bryuno A. D., Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Nauka, M., 1998 | MR | Zbl

[14] Botashev A. I., “Analiticheskie metody v teorii vetvleniya”, UMN, 40:4(244) (1985), 147–148 | MR | Zbl

[15] Bryuno A. D., Lunev V. V., “O vychislenii stepennykh razlozhenii modifitsirovannykh dvizhenii tverdogo tela”, DAN RAN, 386:1 (2002), 11–17 | MR | Zbl