Optimal detection of a~given number of unknown quasiperiodic fragments in a~numerical sequence
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 2, pp. 159-175

Voir la notice de l'article provenant de la source Math-Net.Ru

The a posteriori approach to the problem of the noise-proof detection of unknown quasiperiodic fragments in a numerical sequence is studied. It is assumed that the number of elements in the fragments is given. The case is analyzed, where (1) the number of fragments is known; (2) the index of a sequence term corresponding to the beginning of a fragment is a deterministic (not random) value; (3) a sequence distorted by an additive uncorrelated Gaussian noise is available for observation. It is established that the problem under consideration is reduced to testing a set of hypotheses about the mean of a random Gaussian vector. It is shown that the search for a maximum-likelihood hypothesis is equivalent to finding the arguments which yield a maximum for auxiliary object function. It is proven that maximizing this auxiliary object function is a polynomial-solvable discrete optimization problem. An exact algorithm for solving this auxiliary problem is substantiated. We derive and prove an algorithm for the optimal (maximum-likelihood) detection of fragments. The kernel of this algorithm is the algorithm for solution to an auxiliary problem. The results of numerical simulation are presented.
@article{SJVM_2007_10_2_a3,
     author = {A. V. Kel'manov and S. A. Khamidullin},
     title = {Optimal detection of a~given number of unknown quasiperiodic fragments in a~numerical sequence},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {159--175},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a3/}
}
TY  - JOUR
AU  - A. V. Kel'manov
AU  - S. A. Khamidullin
TI  - Optimal detection of a~given number of unknown quasiperiodic fragments in a~numerical sequence
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2007
SP  - 159
EP  - 175
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a3/
LA  - ru
ID  - SJVM_2007_10_2_a3
ER  - 
%0 Journal Article
%A A. V. Kel'manov
%A S. A. Khamidullin
%T Optimal detection of a~given number of unknown quasiperiodic fragments in a~numerical sequence
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2007
%P 159-175
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a3/
%G ru
%F SJVM_2007_10_2_a3
A. V. Kel'manov; S. A. Khamidullin. Optimal detection of a~given number of unknown quasiperiodic fragments in a~numerical sequence. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 2, pp. 159-175. http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a3/