On a~modification of algebraic multilevel iteration method for finite element matrices
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 1, pp. 61-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

Today, multigrids and multilevel methods for solving a sparse linear system of equations are well known. They are both robust and efficient. In [6], the algebraic multilevel iteration (AMLI) method for finite element matrices has been proposed. However, this method has two restrictions on the properties of the original matrix, which can fail in practice. To avoid them and to improve the quality of the AMLI-preconditioner, a family of relaxation parameters is suggested and analyzed.
@article{SJVM_2007_10_1_a3,
     author = {M. R. Larin},
     title = {On a~modification of algebraic multilevel iteration method for finite element matrices},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {61--76},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a3/}
}
TY  - JOUR
AU  - M. R. Larin
TI  - On a~modification of algebraic multilevel iteration method for finite element matrices
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2007
SP  - 61
EP  - 76
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a3/
LA  - en
ID  - SJVM_2007_10_1_a3
ER  - 
%0 Journal Article
%A M. R. Larin
%T On a~modification of algebraic multilevel iteration method for finite element matrices
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2007
%P 61-76
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a3/
%G en
%F SJVM_2007_10_1_a3
M. R. Larin. On a~modification of algebraic multilevel iteration method for finite element matrices. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 1, pp. 61-76. http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a3/

[1] Apel T., Anisotropic Finite Elements: Local Estimates and Applications, Advances in Num. Math., Teubner, Stutgart–Leipzig, 1999 | MR | Zbl

[2] Axelsson O., Iterative Solution Methods, Cambridge University Press, New York, 1994 | MR | Zbl

[3] Axelsson O., “The Method of Diagonal Compensation of Reduced Matrix Entries and Multilevel Iteration”, J. Comput. Appl. Math., 83 (1991), 31–43 | DOI | MR

[4] Axelsson O., Barker V. A., Finite Element Solution of Boundary Value Problems: Theory and Computation, Academic Press, Inc., 1984 | MR | Zbl

[5] Axelsson O., Eijkhout V., “The nested recursive two-level factorization method for nine-point difference matrices”, SIAM J. Sci. Stat. Comp., 12 (1991), 1373–1400 | DOI | MR | Zbl

[6] Axelsson O., Larin M., “An algebraic multilevel iteration method for finite element matrices”, J. Comp. Appl. Math., 89 (1997), 135–153 | DOI | MR

[7] Axelsson O., Neytcheva M., “Algebraic multilevel iteration method for Stieltjes matrices”, Numer. Lin. Alg. Appl., 1 (1994), 213–236 | DOI | MR | Zbl

[8] Axelsson O., Padiy A., “On the additive version of the algebraic multilevel iteration method for anisotropic elliptic problems”, SIAM J. Sci. Comput., 20 (1999), 1807–1830 | DOI | MR | Zbl

[9] Axelsson O., Vassilevski P., “Algebraic multilevel preconditioning methods I”, Numer.Math., 56 (1989), 157–177 | DOI | MR | Zbl

[10] Axelsson O., Vassilevski P., “Algebraic multilevel preconditioning methods II”, SIAM J. Numer. Anal., 27 (1990), 1569–1590 | DOI | MR | Zbl

[11] Axelsson O., Vassilevski P., “Variable-step multilevel preconditioning methods, I: Self-adjoint and positive definite elliptic problems”, Numer. Lin. Alg. Appl., 1 (1994), 75–101 | DOI | MR | Zbl

[12] Beauwens R., “Modified incomplete factorization strategies”, Lect. Notes in Math., 1457, 1990, 1–16 | MR | Zbl

[13] Gantmakher F. R., The Theory of Matrices, Chelsea, New York, 1959

[14] Il'in V. P., Iterative Incomplete Factorization Methods, World Scientific Publishing Co., Singapore, 1992 | MR

[15] Larin M., “An algebraic multilevel iterative method of incomplete factorization for Stieltjes matrices”, Comput. Math. Math. Physics, 38 (1998), 1011–1025 | MR | Zbl

[16] Larin M., “An optimal incomplete factorization method for Stieltjes matrices”, Recent advances in numerical methods and applications, eds. O. Iliev etc., World Scientific Publ., Singapore, 1999, 696–704 | MR | Zbl

[17] Larin M., “Using a compensation principle in algebraic multilevel iteration method for finite element matrices”, Siberian J. of Numer. Mathematics / Sib. Branch of Russ. Acad. of Sci., 8:2 (2005), 127–142 | Zbl

[18] Notay Y., “Solving positive (semi)definite linear systems by preconditioned iterative methods”, Lect. Notes in Math., 1457, 1990, 105–125 | MR | Zbl

[19] Notay Y., “DRIC: a dynamic version of the RIC method”, Numer. Lin. Alg. Appl., 1 (1994), 511–532 | DOI | MR | Zbl

[20] Notay Y., “Using approximate inverses in algebraic multilevel methods”, Numer. Math., 80 (1998), 397–417 | DOI | MR | Zbl

[21] Notay Y., “Optimal V cycle algebraic multilevel preconditioning”, Numer. Lin. Alg. Appl., 5 (1998), 441–459 | 3.0.CO;2-J class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[22] Notay Y., “Optimal order preconditioning of finite diRerence matrices”, SIAM J. Sci. Comp., 21 (2000), 1991–2007 | DOI | MR | Zbl

[23] Notay Y., “Robust parameter-free algebraic multilevel preconditioning”, Numer. Lin. Alg. Appl., 9 (2002), 409–428 | DOI | MR | Zbl

[24] Vassilevski P., “Hybrid V-cycle algebraic multilevel preconditioners”, Math. Comp., 58 (1992), 489–512 | DOI | MR | Zbl