On a~modification of algebraic multilevel iteration method for finite element matrices
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 1, pp. 61-76

Voir la notice de l'article provenant de la source Math-Net.Ru

Today, multigrids and multilevel methods for solving a sparse linear system of equations are well known. They are both robust and efficient. In [6], the algebraic multilevel iteration (AMLI) method for finite element matrices has been proposed. However, this method has two restrictions on the properties of the original matrix, which can fail in practice. To avoid them and to improve the quality of the AMLI-preconditioner, a family of relaxation parameters is suggested and analyzed.
@article{SJVM_2007_10_1_a3,
     author = {M. R. Larin},
     title = {On a~modification of algebraic multilevel iteration method for finite element matrices},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {61--76},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a3/}
}
TY  - JOUR
AU  - M. R. Larin
TI  - On a~modification of algebraic multilevel iteration method for finite element matrices
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2007
SP  - 61
EP  - 76
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a3/
LA  - en
ID  - SJVM_2007_10_1_a3
ER  - 
%0 Journal Article
%A M. R. Larin
%T On a~modification of algebraic multilevel iteration method for finite element matrices
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2007
%P 61-76
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a3/
%G en
%F SJVM_2007_10_1_a3
M. R. Larin. On a~modification of algebraic multilevel iteration method for finite element matrices. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 1, pp. 61-76. http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a3/