Approximation by local exponential splines with arbitrary nodes
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 4, pp. 391-402
Voir la notice de l'article provenant de la source Math-Net.Ru
For the class of functions $W_{\infty}^{\mathcal L_2}[a,b]=\{f\colon f'\in AC,\quad\|\mathcal L_2(\mathcal D)f\|_{\infty}\leq 1\}\quad(\mathcal L_2(\mathcal D)=\mathcal D^2-\beta^2 I,\beta>0$, $\mathcal D$ is operator of differentiation) a new noninterpolating linear method of local exponential spline-approximation with arbitrary nodes is constructed. This method has some smoothing properties and inherits monotonicity and generalized convexity of the data (values of a function $f\in W_{\infty}^{\mathcal L_2}$ at the grid points). The error of approximation in a uniform metric of a class of functions $W_{\infty}^{\mathcal L_2}$ by these splines is exactly determined.
@article{SJVM_2006_9_4_a6,
author = {E. V. Shevaldina},
title = {Approximation by local exponential splines with arbitrary nodes},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {391--402},
publisher = {mathdoc},
volume = {9},
number = {4},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2006_9_4_a6/}
}
E. V. Shevaldina. Approximation by local exponential splines with arbitrary nodes. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 4, pp. 391-402. http://geodesic.mathdoc.fr/item/SJVM_2006_9_4_a6/