Numerical investigation of a~model problem for deforming an elastoplastic body with a~crack under non-penetration condition
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 4, pp. 335-344.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Lamé system is considered in a two-dimensional domain with a crack. The Dirichlet and the Neuman conditions are held on the exterior boundary, and non-penetration condition is assumed to be on a crack. The convolution product of the deviator of the stress tensor is restricted by a certain constant within the domain. Thus, we have a model problem for deforming an ideal elastoplastic body with a crack (the Henky model) subject to the Mises yield criterion. Simultaneously, the non-penetration condition is held on a crack. The problem is formulated as a variational one. We find a displacement vector as solution to minimization problem for the energy functional over a convex set. Discretization of the problem is provided by a finite element method. Examples of calculation are obtained using the Udzava algorithm.
@article{SJVM_2006_9_4_a1,
     author = {E. V. Vtorushin},
     title = {Numerical investigation of a~model problem for deforming an elastoplastic body with a~crack under non-penetration condition},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {335--344},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2006_9_4_a1/}
}
TY  - JOUR
AU  - E. V. Vtorushin
TI  - Numerical investigation of a~model problem for deforming an elastoplastic body with a~crack under non-penetration condition
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2006
SP  - 335
EP  - 344
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2006_9_4_a1/
LA  - ru
ID  - SJVM_2006_9_4_a1
ER  - 
%0 Journal Article
%A E. V. Vtorushin
%T Numerical investigation of a~model problem for deforming an elastoplastic body with a~crack under non-penetration condition
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2006
%P 335-344
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2006_9_4_a1/
%G ru
%F SJVM_2006_9_4_a1
E. V. Vtorushin. Numerical investigation of a~model problem for deforming an elastoplastic body with a~crack under non-penetration condition. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 4, pp. 335-344. http://geodesic.mathdoc.fr/item/SJVM_2006_9_4_a1/

[1] Morozov N. F., Matematicheskie voprosy teorii treschin, Nauka, M., 1984 | MR

[2] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[3] Temam R., Matematicheskie zadachi teorii plastichnosti, Nauka, M., 1991 | MR | Zbl

[4] Khludnev A., Kovtunenko V., Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000

[5] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[6] Glovinski R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979 | MR

[7] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[8] Leontiev A., Herskovits J., Eboli C., “Optimization theory application to slitted plate bending problems”, Int. J. Solids Structures, 35:20 (1998), 2679–2694 | DOI | MR | Zbl

[9] Hintermuller M., Kovtunenko V., Kunisch K., “The primal-dual active set method for a crack problem with non-penetration”, IMA J. of Appl. Math., 69 (2004), 1–26 | DOI | MR

[10] Rabotnov Yu. N., Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1988 | Zbl

[11] Ortega Dzh., Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1991 | MR