Volumetric algorithm for $\rm{3D}$ surface generation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 3, pp. 315-323.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper describes the process of creating a single $\rm{3D}$ model from a number of previously aligned scans. Using the volumetric algorithm makes the solution of this problem intuitively clear and easy for implementation. In addition, it describes the data structure decreasing the memory requirement needed for processing large models.
@article{SJVM_2006_9_3_a9,
     author = {A. G. Pozin},
     title = {Volumetric algorithm for $\rm{3D}$ surface generation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {315--323},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2006_9_3_a9/}
}
TY  - JOUR
AU  - A. G. Pozin
TI  - Volumetric algorithm for $\rm{3D}$ surface generation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2006
SP  - 315
EP  - 323
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2006_9_3_a9/
LA  - ru
ID  - SJVM_2006_9_3_a9
ER  - 
%0 Journal Article
%A A. G. Pozin
%T Volumetric algorithm for $\rm{3D}$ surface generation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2006
%P 315-323
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2006_9_3_a9/
%G ru
%F SJVM_2006_9_3_a9
A. G. Pozin. Volumetric algorithm for $\rm{3D}$ surface generation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 3, pp. 315-323. http://geodesic.mathdoc.fr/item/SJVM_2006_9_3_a9/

[1] Besl P. J. and McKay N. D., “A Method for Registration of 3-D Shapes”, IEEE Trans. Pattern Anal. Machine Intell., 14:2 (1992), 239–256 | DOI

[2] Gelfand N., Ikemoto L., Rusinkiewicz S., Levoy M., “Geometrically Stable Sampling for the ICP Algorithm”, Proc. Intern. Conf. on 3D Digital Imaging and Modeling (October 2003, Banff), 2003, 260–267

[3] Pulli K., “Multiview Registration for Large Data Sets”, Int. Conf. on 3D Digital Imaging and Modeling, Ottawa, 1999, 160–168

[4] Amenta N., Bern M., and Kamvysselis M., “A new Voronoi-based surface reconstruction algorithm”, Proc. Siggraph'98, 1998, 415–421

[5] Amenta N., Choi S. and Kolluri R., “The power crust, unions of balls and the medial axis transform”, Computational Geometry: Theory and Applications, 19 (2001), 127–153 | MR | Zbl

[6] Hoppe H., DeRose T., Duchamp T., McDonald J., and Stuetzle W., “Surface reconstruction from unorganized points”, Proc. Computer Graphics (SIGGRAPH'92) (July 1992), ACM SIGGRAPH Computer Graphics, 26, 1992, 71–78

[7] Turk G. and Levoy M., “Zippered polygon meshes from range images”, Proc. of SIGGRAPH'94 (July 24–29, 1994), ACM Press, Orlando, 1994, 311–318

[8] Curless B. and Levoy M., “A volumetric method for building complex models from range images”, Proc. SIGGRAPH'96 (July 1996), 1996, 303–312

[9] Lorensen W. E. and Cline H. E., “Marching cubes: A high resolution 3D surface construction lgorithm”, Proc. Computer Graphics (SIGGRAPH'87) (July 1987), ACM SIGGRAPH Computer Graphics, 21, 1987, 63–169

[10] Montani C., Scateni R., and Scopigno R., “A modified look-up table for implicit disambiguation of marching cubes”, Visual Computer, 10:6 (1994), 353–355 | DOI

[11] Hoppe H., “Progressive Meshes”, Proc. Computer Graphics, Annual Conference Series (ACM SIGGRAPH'96), 1996, 99–108

[12] Davis J., Marschner S., Garr M. and Levoy M., “Filling Holes in Complex Surfaces using Volumetric Diffusion”, First Intern. Symp. on 3D Data Processing, Visualization, Transmission, 2002, 428–861