Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2006_9_3_a8, author = {L. M. Mestetskiy}, title = {Skeletonization of a~multiply-connected polygonal domain based on its boundary adjacent tree}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {299--314}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2006_9_3_a8/} }
TY - JOUR AU - L. M. Mestetskiy TI - Skeletonization of a~multiply-connected polygonal domain based on its boundary adjacent tree JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2006 SP - 299 EP - 314 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2006_9_3_a8/ LA - ru ID - SJVM_2006_9_3_a8 ER -
L. M. Mestetskiy. Skeletonization of a~multiply-connected polygonal domain based on its boundary adjacent tree. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 3, pp. 299-314. http://geodesic.mathdoc.fr/item/SJVM_2006_9_3_a8/
[1] Mestetskii L. M., Nepreryvnyi skelet binarnogo rastrovogo izobrazheniya, Tr. Mezhdunar. konf. “Grafikon-98”, Moskva, 1998
[2] Kirkpatrick D. G., “Efficient computation of continuous skeletons”, Proc. of the 20th Annual IEEE Symposium on FOCS, 1979, 18–27
[3] Fortune S., “A sweepline algorithm for Voronoi diagrams”, Algorithmica, 2 (1987), 153–174 | DOI | MR | Zbl
[4] Yap C. K., “An $O(n\log n)$ algorithm for the Voronoi diagram of the set of simple curve segments”, Discrete Comput. Geom., 2 (1987), 365–393 | DOI | MR | Zbl
[5] Lee D. T., “Medial axes transform of planar shape”, IEEE Trans. Patt. Anal. Mach. Intell., 4 (1982), 363–369 | DOI | Zbl
[6] Mestetskii L. M., “Skeletizatsiya mnogougolnoi figury na osnove obobschennoi triangulyatsii Delone”, Programmirovanie, 3 (1999), 16–31 | MR
[7] Lagno D., Sobolev A., Modifitsirovannye algoritmy Forchuna i Li skeletizatsii mnogougolnoi figury, Tr. mezhdunar. konf. “Grafikon-2001”, Moskva, 2001
[8] Srinivasan V., Nackman L. R., Tang J.-M., Meshkat S. N., “Automatic mesh generation using the symmetric axis transform of polygonal domains”, Proc. of the IEEE 80, 9 (1992), 1485–1501 | DOI
[9] Lee D. T., Schachter B. J., “Two algorithms for constructing a Delaunay triangulation”, Int. J. Comput. Inf. Sci., 9 (1980), 219–242 | DOI | MR | Zbl
[10] Preparata F., Sheimos M., Vychislitelnaya geometriya: vvedenie, Mir, M., 1989 | MR | Zbl
[11] Dehne F., Klein R., ““The big sweep”: On the power of the wavefront approach to Voronoi Diagrams”, Algorithmica, 17 (1997), 19–32 | DOI | MR | Zbl
[12] Akho A., Khopkroft Dzh., Ulman Dzh., Postroenie i analiz vychislitelnykh algoritmov, Mir, M., 1979 | MR