Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2006_9_3_a5, author = {A. S. Konouchine and V. A. Gaganov and V. P. Vezhnevets}, title = {Extending {RANSAC-based} estimators to handle unknown and varying noise level}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {263--277}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SJVM_2006_9_3_a5/} }
TY - JOUR AU - A. S. Konouchine AU - V. A. Gaganov AU - V. P. Vezhnevets TI - Extending RANSAC-based estimators to handle unknown and varying noise level JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2006 SP - 263 EP - 277 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2006_9_3_a5/ LA - en ID - SJVM_2006_9_3_a5 ER -
%0 Journal Article %A A. S. Konouchine %A V. A. Gaganov %A V. P. Vezhnevets %T Extending RANSAC-based estimators to handle unknown and varying noise level %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2006 %P 263-277 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2006_9_3_a5/ %G en %F SJVM_2006_9_3_a5
A. S. Konouchine; V. A. Gaganov; V. P. Vezhnevets. Extending RANSAC-based estimators to handle unknown and varying noise level. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 3, pp. 263-277. http://geodesic.mathdoc.fr/item/SJVM_2006_9_3_a5/
[1] Stewart C. V., “Robust parameter estimation in computer vision”, SIAM Review, 41:3 (1999), 513–537 | DOI | MR | Zbl
[2] Illingworth J., Kittler J., “A survey of the Hough transform”, Computer Vision, Graphics, and Image Processing, 44:1 (1988), 87–116 | DOI
[3] Rousseeuw P. J., “Least median of squares regression”, J. of the American Statistical Association, 79 (1984), 871–880 | DOI | MR | Zbl
[4] Fischler M. A., Bolles R. C., “Random Sample Consensus: A paradigm for model fitting with applications to image analysis and automated cartography”, Communications of the ACM, 24:6 (1981), 381–395 | DOI | MR
[5] Torr P., Zisserman A., “Robust computation and parametrization of multiple view relations”, Proc. ICCV'98, 1998, 727–732
[6] Torr P. H. S., Zisserman A., “MLESAC: A new robust estimator with application to estimating image geometry”, Computer Vision and Image Understanding, 78 (2000), 138–156 | DOI
[7] Torr P. H. S., “Bayesian model estimation and selection for epipolar geometry and generic manifold fitting”, Int. J. of Computer Vision, 50:1 (2002), 27–45 | DOI
[8] Feng C. L., Hung Y. S., “Robust method for estimating the fundamental matrix”, Proc. DICTA-2003, 2003, 633–642
[9] Harris C., Stephens M., “A combined corner and edge detector”, Fourth Alvey Vision Conference, 1988, 147–151
[10] Forsyth D., Ponce J., Computer Vision: A Modern Approach, Prentice-Hall, London, 2003
[11] Pollefeys M., Obtaining 3D Models With Hand-held Camera, SIGGRAPH Courses, 2001
[12] Konouchine A., Gaganov V., Vezhnevets V., “Combined guided tracking and matching with adaptive track initialization”, Proc. Graphicon'05, 2005, 301–304
[13] Hartley R., Sturm P., “Triangulation”, CVIU, 68:2 (1997), 146–157 | MR
[14] Chum O., Matas J., “Randomized RANSAC with $T(d,d)$ test”, Proc. British Machine Vision Conf., 2002, 448–457
[15] Nister D., “Preemptive RANSAC for live structure and motion estimation”, Proc. ICCV'03, 2003, 199–206
[16] Chum O., Matas J., Kittler J., “Locally optimized RANSAC”, Lecture Notes in Computer Science, 2781, 2003, 236–243, Proc. 25-th Pattern Recognition Symposium (DAGM)
[17] Tordoff B., Murray D., “Guided sampling and consensus for motion estimation”, Lecture Notes in Computer Science, 2350, 2002, 82–96, Proc. ECCV'02 | Zbl