A~problem of flow through semipermeable obstacle
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 2, pp. 173-188.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with mathematical analysis of a potential flow through a thin semipermeable obstacle. The boundary value problem is characterized by the inequality type conditions imposed on a non-smooth component of the boundary. We prove solvability of the boundary value problem and analyze the solution properties. Using boundary elements, an optimization technique for the numerical solution of the problem is proposed. Numerical results for test problems are presented.
@article{SJVM_2006_9_2_a5,
     author = {A. M. Khludnev and A. N. Leont'ev},
     title = {A~problem of flow through semipermeable obstacle},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {173--188},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2006_9_2_a5/}
}
TY  - JOUR
AU  - A. M. Khludnev
AU  - A. N. Leont'ev
TI  - A~problem of flow through semipermeable obstacle
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2006
SP  - 173
EP  - 188
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2006_9_2_a5/
LA  - en
ID  - SJVM_2006_9_2_a5
ER  - 
%0 Journal Article
%A A. M. Khludnev
%A A. N. Leont'ev
%T A~problem of flow through semipermeable obstacle
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2006
%P 173-188
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2006_9_2_a5/
%G en
%F SJVM_2006_9_2_a5
A. M. Khludnev; A. N. Leont'ev. A~problem of flow through semipermeable obstacle. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 2, pp. 173-188. http://geodesic.mathdoc.fr/item/SJVM_2006_9_2_a5/

[1] Alliney S., Tralli A., Alessandri C., “Boundary variational formulation and numerical solution techniques for unilateral contact problems”, Comput. Mech., 6 (1990), 247–257 | DOI | Zbl

[2] Bazaraa M. S., Shetty C. M., Nonlinear Programming. Theory and Algorithms, John Willey Sons, New York, 1979 | MR | Zbl

[3] Brebbia C. A., Telles J. C. F., Wrobel L. C., Boundary Elements Techniques – Theory and Applications in Engineering, Springer, Berlin, 1984

[4] Cottle R. W., Pang J.-S., Stone R. E., The Linear Complementarity Problem, Academic Press, New York, 1992 | MR | Zbl

[5] Duvaut G., Lions J.-L., Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972 | MR | Zbl

[6] Eck C., Steinbach O., Wendland W. L., “A symmetric boundary element method for contact problems with friction”, Math. Comput. Simul., 50 (1999), 43–61 | DOI | MR | Zbl

[7] Eck C., Wendland W. L., “A residual-based error estimator for BEM-descretizations of contact problems”, Num. Math., 95 (2003), 253–282 | DOI | MR | Zbl

[8] Ekeland I., Temam R., Analyse Convexe et Problèmes Variationnels, Dunod-Gauthier Villars, Paris, 1974 | MR | Zbl

[9] Fichera G., “Boundary Value Problems of Elasticity with Unilateral Constraints”, Handbuch der Physik, Band 6a/2, Springer-Verlag, 1972, 391–424

[10] Friedlander A., Martínez J. M., Santos S. A., “Solution of linear complementarity problems using minimization with simple bounds”, J. Glob. Optim., 6 (1995), 253–267 | DOI | MR | Zbl

[11] Grisvard P., Singularities in Boundary Value Problems, Springer Verlag, Berlin–Heidelberg, 1992 | MR | Zbl

[12] Han H., “A direct boundary element method for Signorini problems”, Math. Comp., 5 (1990), 115–128 | DOI | MR

[13] Herskovits J., “Feasible direction interior-point technique for nonlinear optimization”, J. Optimization Theory Appl., 99 (1998), 121–146 | DOI | MR | Zbl

[14] Khludnev A. M., “The method of smooth domain in the equilibrium problem for a plate with a crack”, Sib. Mat. Zh., 43 (2002), 1388–1400 | MR | Zbl

[15] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000

[16] Khludnev A. M., Ohtsuka K., Sokolowski J., “On derivative of the energy functional for elastic bodies with a crack and unilateral conditions”, Q. Appl. Math., 60 (2002), 99–109 | MR | Zbl

[17] Khludnev A. M., Sokolowski J., Modelling and Control in Solid Mechanics, Birkhäuser, Basel–Boston–Berlin, 1997 | MR | Zbl

[18] Leontiev A., Huacasi W., Herskovits J., “An optimization technique for the solution of Signorini problem using boundary elements method”, Struct. Multidiscip., 24 (2002), 72–77 | DOI

[19] Polizzotto C., “Variational boundary-integral-equation approach to unilateral contact problems in elasticity”, Comput. Mech., 13 (1993), 100–115 | MR | Zbl

[20] Simunovic S., Saigal S., “Frictionless contact with B.E.M. using quadratic programming”, J. Eng. Mech.-ASCE, 118 (1992), 1876–1891 | DOI

[21] Solodov M. V., “Some optimization reformulations of the extended linear complementarity problem”, Comput. Optim. Appl., 13 (1999), 187–200 | DOI | MR | Zbl

[22] Spann W., “On the boundary-element method for the Signorini problem of the Laplacian”, Numer. Math., 65 (1993), 337–356 | DOI | MR | Zbl

[23] Xiao J.-R., Lok T.-S., Xu S. Z., “Boundary elements linear complementary equation solution to polygonial unilaterally simply supported plates”, Eng. Anal. Bound. Elem., 23 (1999), 297–305 | DOI | Zbl