Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2006_9_1_a4, author = {I. Moghrabi}, title = {Multiple update multi-step methods for unconstrained optimization}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {47--53}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SJVM_2006_9_1_a4/} }
I. Moghrabi. Multiple update multi-step methods for unconstrained optimization. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 1, pp. 47-53. http://geodesic.mathdoc.fr/item/SJVM_2006_9_1_a4/
[1] Ford J. A., Moghrabi I. A., “Using function-values in multi-step quasi-Newton methods”, J. Comput. Appl. Math., 66 (1996), 201–211 | DOI | MR | Zbl
[2] Ford J. A., Moghrabi I. A., “Multi-step quasi-Newton methods for optimization”, J. Comput. Appl. Math., 50 (1994), 305–323 | DOI | MR | Zbl
[3] Ford J. A., Moghrabi I. A., “Alternative parameter choices for multi-step quasi-Newton methods”, Optimization Methods and Software, 2 (1993), 357–370 | DOI | MR
[4] Ford J. A., Saadallah A. F., “A rational function model for unconstrained optimization”, Colloquia Mathematica Societatis János Bolyai, 50 (1986), 539–563
[5] Dennis J. E., Schnabel R. B., “Least change secant updates for quasi-Newton methods”, SIAM Review, 21 (1979), 443–459 | DOI | MR | Zbl
[6] Ford J. A., Ghandhari R. A., “On the use of function-values in unconstrained optimization”, J. Comput. Appl. Math., 28 (1989), 187–198 | DOI | MR | Zbl
[7] Ford J. A., Ghandhari R. A., “Efficient utilization of function-values in quasi-Newton methods”, Colloquia Mathematica Societatis János Bolyai, 59 (1990), 49–64 | MR
[8] Ford J. A., Ghandhari R. A., “On the use of curvature estimates in quasi-Newton methods”, J. Comput. Appl. Math., 35 (1991), 185–196 | DOI | MR | Zbl
[9] Fletcher R., Practical Methods of Optimization, 2nd ed., Wiley, New York, 1987 | MR
[10] Broyden C. G., “The convergence of a class of double-rank minimization algorithms. Part 2: The new algorithm”, J. Inst. Math. Appl., 6 (1970), 222–231 | DOI | MR | Zbl
[11] Fletcher R., “A new approach to variable metric algorithms”, Comput. J., 13 (1970), 317–322 | DOI | Zbl
[12] Goldfarb D., “A family of variable metric methods derived by variational means”, Math. Comp., 24 (1970), 23–26 | DOI | MR | Zbl
[13] Shanno D. F., “Conditioning of quasi-Newton methods for function minimization”, Math. Comp., 24 (1970), 647–656 | DOI | MR
[14] Shanno D. F., Phua K. H., “Matrix conditioning and nonlinear optimization”, Math. Programming, 14 (1978), 149–160 | DOI | MR | Zbl
[15] Brent R., Algorithms for Minimization without Derivatives, Prentice-Hall, Englewood Cliffs, 1973 | MR | Zbl
[16] El-Baali M., “Extra Updates for the BFGS Method”, Optimization Methods and Software, 9:2 (1999), 1–21