Multiple update multi-step methods for unconstrained optimization
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 1, pp. 47-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

The quasi-Newton multi-step methods were developed in [2] and have revealed substantial numerical improvements over the standard single step Secant-based BFGS. Such methods use a variant of the Secant equation that the updated Hessian (or its inverse) satisfies at each iteration. In this paper, we explore algorithms whose updated Hessians satisfy multiple relations of the Secant-type in order that the numerical potentials of such techniques be investigated. We employ a rational model in developing the new methods. The model hosts a free parameter which is exploited in enforcing symmetry on the multi-updated matrix. Our results are encouraging, and the improvements incurred supercede those obtained from other existing methods at minimal extra storage and computational overhead.
@article{SJVM_2006_9_1_a4,
     author = {I. Moghrabi},
     title = {Multiple update multi-step methods for unconstrained optimization},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {47--53},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2006_9_1_a4/}
}
TY  - JOUR
AU  - I. Moghrabi
TI  - Multiple update multi-step methods for unconstrained optimization
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2006
SP  - 47
EP  - 53
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2006_9_1_a4/
LA  - en
ID  - SJVM_2006_9_1_a4
ER  - 
%0 Journal Article
%A I. Moghrabi
%T Multiple update multi-step methods for unconstrained optimization
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2006
%P 47-53
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2006_9_1_a4/
%G en
%F SJVM_2006_9_1_a4
I. Moghrabi. Multiple update multi-step methods for unconstrained optimization. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 1, pp. 47-53. http://geodesic.mathdoc.fr/item/SJVM_2006_9_1_a4/

[1] Ford J. A., Moghrabi I. A., “Using function-values in multi-step quasi-Newton methods”, J. Comput. Appl. Math., 66 (1996), 201–211 | DOI | MR | Zbl

[2] Ford J. A., Moghrabi I. A., “Multi-step quasi-Newton methods for optimization”, J. Comput. Appl. Math., 50 (1994), 305–323 | DOI | MR | Zbl

[3] Ford J. A., Moghrabi I. A., “Alternative parameter choices for multi-step quasi-Newton methods”, Optimization Methods and Software, 2 (1993), 357–370 | DOI | MR

[4] Ford J. A., Saadallah A. F., “A rational function model for unconstrained optimization”, Colloquia Mathematica Societatis János Bolyai, 50 (1986), 539–563

[5] Dennis J. E., Schnabel R. B., “Least change secant updates for quasi-Newton methods”, SIAM Review, 21 (1979), 443–459 | DOI | MR | Zbl

[6] Ford J. A., Ghandhari R. A., “On the use of function-values in unconstrained optimization”, J. Comput. Appl. Math., 28 (1989), 187–198 | DOI | MR | Zbl

[7] Ford J. A., Ghandhari R. A., “Efficient utilization of function-values in quasi-Newton methods”, Colloquia Mathematica Societatis János Bolyai, 59 (1990), 49–64 | MR

[8] Ford J. A., Ghandhari R. A., “On the use of curvature estimates in quasi-Newton methods”, J. Comput. Appl. Math., 35 (1991), 185–196 | DOI | MR | Zbl

[9] Fletcher R., Practical Methods of Optimization, 2nd ed., Wiley, New York, 1987 | MR

[10] Broyden C. G., “The convergence of a class of double-rank minimization algorithms. Part 2: The new algorithm”, J. Inst. Math. Appl., 6 (1970), 222–231 | DOI | MR | Zbl

[11] Fletcher R., “A new approach to variable metric algorithms”, Comput. J., 13 (1970), 317–322 | DOI | Zbl

[12] Goldfarb D., “A family of variable metric methods derived by variational means”, Math. Comp., 24 (1970), 23–26 | DOI | MR | Zbl

[13] Shanno D. F., “Conditioning of quasi-Newton methods for function minimization”, Math. Comp., 24 (1970), 647–656 | DOI | MR

[14] Shanno D. F., Phua K. H., “Matrix conditioning and nonlinear optimization”, Math. Programming, 14 (1978), 149–160 | DOI | MR | Zbl

[15] Brent R., Algorithms for Minimization without Derivatives, Prentice-Hall, Englewood Cliffs, 1973 | MR | Zbl

[16] El-Baali M., “Extra Updates for the BFGS Method”, Optimization Methods and Software, 9:2 (1999), 1–21