Selection of parameters of generalized cubic splines with convexity preserving interpolation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 1, pp. 5-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that computation of generalized interpolating cubic splines is reduced to solving a tridiagonal system of linear equations with column diagonal dominance with respect to knot values of the second derivative of a spline. The non-negativity conditions of the solution for such systems are found. The general scheme for choosing tension parameters of the generalized splines for convexity-preserving interpolation is offered. The resulting spline minimally differs from the classical cubic one and coincides with it if sufficient convexity conditions for the last one are satisfied. The algorithms specified are considered for different generalized cubic splines such as rational, exponential, variable power, hyperbolic splines and splines with additional knots.
@article{SJVM_2006_9_1_a1,
     author = {V. V. Bogdanov and Yu. S. Volkov},
     title = {Selection of parameters of generalized cubic splines with convexity preserving interpolation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {5--22},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2006_9_1_a1/}
}
TY  - JOUR
AU  - V. V. Bogdanov
AU  - Yu. S. Volkov
TI  - Selection of parameters of generalized cubic splines with convexity preserving interpolation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2006
SP  - 5
EP  - 22
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2006_9_1_a1/
LA  - ru
ID  - SJVM_2006_9_1_a1
ER  - 
%0 Journal Article
%A V. V. Bogdanov
%A Yu. S. Volkov
%T Selection of parameters of generalized cubic splines with convexity preserving interpolation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2006
%P 5-22
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2006_9_1_a1/
%G ru
%F SJVM_2006_9_1_a1
V. V. Bogdanov; Yu. S. Volkov. Selection of parameters of generalized cubic splines with convexity preserving interpolation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 1, pp. 5-22. http://geodesic.mathdoc.fr/item/SJVM_2006_9_1_a1/

[1] Schweikert D. G., “An interpolation curve using a spline in tension”, J. Math. Phys., 45 (1966), 312–317 | MR | Zbl

[2] Späth H., “Exponential spline interpolation”, Computing, 4 (1969), 225–233 | DOI | MR | Zbl

[3] Soanes R. W. Jr., “VP-splines, an extension of twice differentiable interpolation”, Proc. Army numer. Anal. Comp. Conf., Army Research Office, Triangle Park, 1976, 141–152 | Zbl

[4] Pruess S., “Properties of splines in tension”, J. Approx. Theory, 17 (1976), 86–96 | DOI | MR | Zbl

[5] Pruess S., “Alternatives to the exponential spline in tension”, Math. Comput., 33:148 (1979), 1273–1281 | DOI | MR | Zbl

[6] Miroshnichenko V. L., “Interpolyatsiya funktsii s bolshimi gradientami”, Metody approksimatsii i interpolyatsii, Materialy Vsesoyuzn. konf., VTs SO AN SSSR, Novosibirsk, 1981, 98–107 | MR

[7] Späth H., Spline algorithms for curves and surfaces, Utilitas Mathematica Publ. Inc., Winnipeg, 1974 | MR

[8] Kvasov B. I., Methods of shape-preserving spline approximation, World Scientific, Singapore, 2000 | MR | Zbl

[9] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[10] Rentrop P., “An algorithm for computation of the exponential spline”, Numer. Math., 35 (1980), 81–93 | DOI | MR | Zbl

[11] Sapidis N. S., Kaklis P. D., Loukakis T. A., “A method for computing the tension parameters in convexity-preserving spline-in-tension interpolation”, Numer. Math., 54 (1988), 179–192 | DOI | MR | Zbl

[12] McCartin B. J., “Computation of exponential splines”, SIAM J. Sci. Stat. Comput., 11:2 (1990), 242–262 | DOI | MR | Zbl

[13] Miroshnichenko V. L., “Convex and monotone spline interpolation”, Constructive Theory of Function'84, Proc. Intern. Conf., Publishing House of Bulgarian Academy of Sciences, Varna – Sofia, 1984, 610–620

[14] Zavyalov Yu. S., “O teorii obobschennykh kubicheskikh splainov”, Vychislitelnye sistemy. Priblizhenie splainami, 137, IM SO AN SSSR, Novosibirsk, 1990, 50–90

[15] Zavyalov Yu. S., “Monotonnaya interpolyatsiya obobschennymi kubicheskimi splainami klassa $C^2$”, Vychislitelnye sistemy. Interpolyatsiya i approksimatsiya splainami, 147, IM SO RAN, Novosibirsk, 1992, 44–67 | MR

[16] Miroshnichenko V. L., “Optimizatsiya vida ratsionalnogo splaina”, Vychislitelnye sistemy. Splain-funktsii i ikh prilozheniya, 159, IM SO RAN, Novosibirsk, 1997, 87–109 | MR

[17] Volkov Yu. S., “Primenenie ratsionalnykh kubicheskikh splainov dlya rascheta dinamicheskikh kharakteristik dvigatelya”, Vychislitelnye sistemy. Splainy i ikh prilozheniya, 154, IM SO RAN, Novosibirsk, 1995, 65–72 | MR

[18] Zavyalov Yu. S., “Vypuklaya interpolyatsiya obobschennymi kubicheskimi splainami klassa $C^2$”, Vychislitelnye sistemy. Splainy i ikh prilozheniya, 154, IM SO RAN, Novosibirsk, 1995, 15–64 | MR