Some features of the polar vortex dynamics on the isentropic surfaces
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 4, pp. 325-335.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, some features of the polar vortex dynamics are investigated. We use a mathematical model, in which a stream with a linear shift with overlapped stationary waves is taken as basic state. The interaction between the basic stream and the non-stationary Rossby waves is examined. The stability of trajectories is studied. The numerical estimation of some characteristic parameters is made, and the phenomenon of chaotic advection is discussed.
@article{SJVM_2005_8_4_a5,
     author = {V. N. Krupchatnikoff and I. V. Borovko},
     title = {Some features of the polar vortex dynamics on the isentropic surfaces},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {325--335},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_4_a5/}
}
TY  - JOUR
AU  - V. N. Krupchatnikoff
AU  - I. V. Borovko
TI  - Some features of the polar vortex dynamics on the isentropic surfaces
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2005
SP  - 325
EP  - 335
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2005_8_4_a5/
LA  - ru
ID  - SJVM_2005_8_4_a5
ER  - 
%0 Journal Article
%A V. N. Krupchatnikoff
%A I. V. Borovko
%T Some features of the polar vortex dynamics on the isentropic surfaces
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2005
%P 325-335
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2005_8_4_a5/
%G ru
%F SJVM_2005_8_4_a5
V. N. Krupchatnikoff; I. V. Borovko. Some features of the polar vortex dynamics on the isentropic surfaces. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 4, pp. 325-335. http://geodesic.mathdoc.fr/item/SJVM_2005_8_4_a5/

[1] McIntyre M. E., Palmer T. N., “Breaking waves in the stratosphere”, Nature, 305 (1983), 593–600 | DOI

[2] Juckes M. N., McIntyre M. E., “A high resolution, one-layer model of breaking planetary waves in the stratosphere”, Nature, 328 (1987), 590–596 | DOI

[3] Anderson et al., “Free radicals within the Antarctic vortex: the role of CFCs in Antarctic ozon loss”, Nature, 251 (1991), 39–46

[4] Anderson et al., “Ozon destruction by the chlorine radicals within the Antarctic vortex”, J. Geophys. Res., 94 (1989), 11465–11479 | DOI

[5] Juckes M., “A shallow water model of the winter stratosphere”, J. Atm. Sci., 46 (1989), 2934–2955 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[6] Dritchel D., “Contour surgery: a topological reconnection scheme for extended integrations using contour dynamics”, J. Comput. Phys., 77:1 (1988), 240–266 | DOI | MR

[7] Polvani L. M., “Plumb, Rossby wave breaking, microbreaking, filamentation and secondary vortex formation”, J. Atm. Sci., 49:6 (1992), 462–476 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[8] Zabusky N. J., Hughes M. H., Roberts K. V., “Contour dynamics for Euler equations in two dimensions”, J. Comput. Phys., 30:1 (1979), 96–106 | DOI | MR | Zbl

[9] Polvani L. M., Zabusky N. J., Flierl G. R., “Filamentation of coherent vortex structures via separatrix crossing: a quantitative estimate of onset time”, The Physics of Fluids A, 1 (1986), 181–184 | DOI | MR

[10] Warn T., Warn H., “The evolution of a nonlinear critical level”, Stud. Appl. Math., 59 (1978), 37–71 | MR | Zbl

[11] Haynes P. H., “The effect of barotropic instability on the nonlinear evolution of the Rossby-wave critical layer”, J. Fluid. Mech., 207 (1989), 231–266 | DOI | MR | Zbl

[12] McIntyre M. E., Palmer T. N., “The “surf zone” in the stratosphere”, J. Atmos. Terr. Phys., 46 (1984), 825–850 | DOI

[13] Stewartson K., “The evolution of the critical layer of a Rossby wave”, Geophys., Astrophys. Fluid Dyn., 9 (1978), 185–200 | DOI | Zbl

[14] Hoskins B. J., McIntyre M. E., Robertson A. W., “On the use and significance of isentropic potential-vorticity maps”, Quart. J. Roy. Meteor. Soc., 111 (1985), 877–946 | DOI

[15] Swanson K., Pierrehumbert R., “Potential vorticity homogenization and stationary waves”, J. Atm. Sci., 52 (1994), 990–994 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[16] Aref H., “Stirring by chaotic advection”, J. Fluid. Mech., 143 (1984), 1–21 | DOI | MR | Zbl

[17] Ottino J., The Kinematics of Mixing: Stretching, Chaos and Transport, Cambridge Univercity Press, Cambridge, 1989 | MR | Zbl

[18] Pierrehumbert R., “Large-scale horizontal mixing planetary atmosphere”, Phys. Fluid A, 3 (1991), 1250–1260 | DOI

[19] Dymnikov V. P., Filatov A. N., Ustoichivost krupnomasshtabnykh atmosfernykh protsessov, Gidrometeoizdat, L., 1990

[20] Dymnikov V. P., Filatov A. N., Osnovy matematicheskoi teorii klimata, Vserossiiskii institut nauchnoi i tekhnicheskoi informatsii, M., 1994 | Zbl

[21] Oseledets V. M., “Multiplikativnaya ergodicheskaya teorema. Kharakteristicheskie pokazateli Lyapunova dinamicheskikh sistem”, Tr. mosk. matem. obsch-va, 19, 1969, 179–210