Monte Carlo simulation of spatially inhomogeneous coagulation of particles altogether with their diffusion
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 3, pp. 245-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

Monte Carlo algorithm for simulation of coagulation of particles altogether with their diffusion is developed. The problem to solve is the boundary-value problem for the 1D Smoluchowski equation containing convection and diffusion terms. The stochastic particles method is underlying the algorithm. The principal features of the algorithm are the use of special Markov process and a splitting scheme according to physical processes. A special technique to reduce the estimator variance is developed. The method of tentative estimation of the algorithm parameters is given.
@article{SJVM_2005_8_3_a5,
     author = {M. A. Marchenko},
     title = {Monte {Carlo} simulation of spatially inhomogeneous coagulation of particles altogether with their diffusion},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {245--258},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a5/}
}
TY  - JOUR
AU  - M. A. Marchenko
TI  - Monte Carlo simulation of spatially inhomogeneous coagulation of particles altogether with their diffusion
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2005
SP  - 245
EP  - 258
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a5/
LA  - ru
ID  - SJVM_2005_8_3_a5
ER  - 
%0 Journal Article
%A M. A. Marchenko
%T Monte Carlo simulation of spatially inhomogeneous coagulation of particles altogether with their diffusion
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2005
%P 245-258
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a5/
%G ru
%F SJVM_2005_8_3_a5
M. A. Marchenko. Monte Carlo simulation of spatially inhomogeneous coagulation of particles altogether with their diffusion. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 3, pp. 245-258. http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a5/

[1] Voloschuk V. M., Kineticheskaya teoriya koagulyatsii, Gidrometeoizdat, L., 1984

[2] Ivanov M. S., Rogazinskii S. V., Metod pryamogo statisticheskogo modelirovaniya v dinamike razrezhennogo gaza, VTs SO AN SSSR, Novosibirsk, 1988

[3] Mikhailov G. A., Vesovye algoritmy statisticheskogo modelirovaniya, Izd. IVMiMG SO RAN, Novosibirsk, 2003

[4] Smolukhovskii M., “Tri doklada o diffuzii, brounovskom molekulyarnom dvizhenii i koagulyatsii kolloidnykh chastits”, Brounovskoe dvizhenie, M., 1936, 332–417

[5] Aldous D. J., “Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists”, Bernoulli, 5:1 (1999), 3–48 | DOI | MR | Zbl

[6] Eibeck A., Wagner W., “An Efficient Stochastic Algorithm for Studying Coagulation Dynamics and Gelation Phenomena”, SIAM J. Sci. Comput., 22:3 (2000), 802–821 | DOI | MR | Zbl

[7] Garcia A. L., den Broeck V., Aertsens M., Serneels R., “A Monte Carlo simulation of coagulation”, Physica A, 143 (1987), 535–546 | DOI

[8] Gillespie D. T., “Exact Method for Numerically Simulating the Stochastic Coalescence Process in a Cloud”, J. Atmospheric Sci., 32:10 (1975), 1977–1989 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[9] Grosschmidt D., Bockhorn H., Goodson M., Kraft M., “Two approaches to the simulation of silica particle systems”, Proc. Combust. Inst., 29 (2002), 1039–1046 | DOI

[10] Guias F., Stochastic Models for Coagulation-Fragmentation Processes, ECMI-Activity Report, Milan Research Center for Indust. and Appl. Math., 1999

[11] Kloeden P. E., Platen E., Numerical solution of stochastic differential equations, Application of Math., 13, Springer, Berlin, 1995

[12] Kolodko A., Sabelfeld K., “Stochastic Lagrangian model for spatially inhomogeneous Smoluchowski equation governing coagulating and diffusing particles”, Mathematics and Computers in Simulation, 61:2 (2003), 115–137 | DOI | MR | Zbl

[13] Sabelfeld K., Rogasinsky S., Kolodko A., Levykin A., “Stochastic algorithms for solving the Smolouchovski coagulation equation and applications to aerosol growth simulation”, Monte Carlo Methods and Appl., 2:1 (1996), 41–87 | DOI | MR | Zbl