Monte Carlo simulation of spatially inhomogeneous coagulation of particles altogether with their diffusion
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 3, pp. 245-258
Voir la notice de l'article provenant de la source Math-Net.Ru
Monte Carlo algorithm for simulation of coagulation of particles altogether with their diffusion is developed. The problem to solve is the boundary-value problem for the 1D Smoluchowski equation containing convection and diffusion terms.
The stochastic particles method is underlying the algorithm. The principal features of the algorithm are the use of special Markov process and a splitting scheme according to physical processes.
A special technique to reduce the estimator variance is developed. The method of tentative estimation of the algorithm parameters is given.
@article{SJVM_2005_8_3_a5,
author = {M. A. Marchenko},
title = {Monte {Carlo} simulation of spatially inhomogeneous coagulation of particles altogether with their diffusion},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {245--258},
publisher = {mathdoc},
volume = {8},
number = {3},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a5/}
}
TY - JOUR AU - M. A. Marchenko TI - Monte Carlo simulation of spatially inhomogeneous coagulation of particles altogether with their diffusion JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2005 SP - 245 EP - 258 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a5/ LA - ru ID - SJVM_2005_8_3_a5 ER -
%0 Journal Article %A M. A. Marchenko %T Monte Carlo simulation of spatially inhomogeneous coagulation of particles altogether with their diffusion %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2005 %P 245-258 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a5/ %G ru %F SJVM_2005_8_3_a5
M. A. Marchenko. Monte Carlo simulation of spatially inhomogeneous coagulation of particles altogether with their diffusion. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 3, pp. 245-258. http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a5/