Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2005_8_3_a5, author = {M. A. Marchenko}, title = {Monte {Carlo} simulation of spatially inhomogeneous coagulation of particles altogether with their diffusion}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {245--258}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a5/} }
TY - JOUR AU - M. A. Marchenko TI - Monte Carlo simulation of spatially inhomogeneous coagulation of particles altogether with their diffusion JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2005 SP - 245 EP - 258 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a5/ LA - ru ID - SJVM_2005_8_3_a5 ER -
%0 Journal Article %A M. A. Marchenko %T Monte Carlo simulation of spatially inhomogeneous coagulation of particles altogether with their diffusion %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2005 %P 245-258 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a5/ %G ru %F SJVM_2005_8_3_a5
M. A. Marchenko. Monte Carlo simulation of spatially inhomogeneous coagulation of particles altogether with their diffusion. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 3, pp. 245-258. http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a5/
[1] Voloschuk V. M., Kineticheskaya teoriya koagulyatsii, Gidrometeoizdat, L., 1984
[2] Ivanov M. S., Rogazinskii S. V., Metod pryamogo statisticheskogo modelirovaniya v dinamike razrezhennogo gaza, VTs SO AN SSSR, Novosibirsk, 1988
[3] Mikhailov G. A., Vesovye algoritmy statisticheskogo modelirovaniya, Izd. IVMiMG SO RAN, Novosibirsk, 2003
[4] Smolukhovskii M., “Tri doklada o diffuzii, brounovskom molekulyarnom dvizhenii i koagulyatsii kolloidnykh chastits”, Brounovskoe dvizhenie, M., 1936, 332–417
[5] Aldous D. J., “Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists”, Bernoulli, 5:1 (1999), 3–48 | DOI | MR | Zbl
[6] Eibeck A., Wagner W., “An Efficient Stochastic Algorithm for Studying Coagulation Dynamics and Gelation Phenomena”, SIAM J. Sci. Comput., 22:3 (2000), 802–821 | DOI | MR | Zbl
[7] Garcia A. L., den Broeck V., Aertsens M., Serneels R., “A Monte Carlo simulation of coagulation”, Physica A, 143 (1987), 535–546 | DOI
[8] Gillespie D. T., “Exact Method for Numerically Simulating the Stochastic Coalescence Process in a Cloud”, J. Atmospheric Sci., 32:10 (1975), 1977–1989 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[9] Grosschmidt D., Bockhorn H., Goodson M., Kraft M., “Two approaches to the simulation of silica particle systems”, Proc. Combust. Inst., 29 (2002), 1039–1046 | DOI
[10] Guias F., Stochastic Models for Coagulation-Fragmentation Processes, ECMI-Activity Report, Milan Research Center for Indust. and Appl. Math., 1999
[11] Kloeden P. E., Platen E., Numerical solution of stochastic differential equations, Application of Math., 13, Springer, Berlin, 1995
[12] Kolodko A., Sabelfeld K., “Stochastic Lagrangian model for spatially inhomogeneous Smoluchowski equation governing coagulating and diffusing particles”, Mathematics and Computers in Simulation, 61:2 (2003), 115–137 | DOI | MR | Zbl
[13] Sabelfeld K., Rogasinsky S., Kolodko A., Levykin A., “Stochastic algorithms for solving the Smolouchovski coagulation equation and applications to aerosol growth simulation”, Monte Carlo Methods and Appl., 2:1 (1996), 41–87 | DOI | MR | Zbl