Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2005_8_3_a1, author = {A. B. Andreev and M. S. Petrov and T. D. Todorov}, title = {General results for lumped mass approximation of isoparametric eigenvalue problem on triangular meshes}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {189--205}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a1/} }
TY - JOUR AU - A. B. Andreev AU - M. S. Petrov AU - T. D. Todorov TI - General results for lumped mass approximation of isoparametric eigenvalue problem on triangular meshes JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2005 SP - 189 EP - 205 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a1/ LA - en ID - SJVM_2005_8_3_a1 ER -
%0 Journal Article %A A. B. Andreev %A M. S. Petrov %A T. D. Todorov %T General results for lumped mass approximation of isoparametric eigenvalue problem on triangular meshes %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2005 %P 189-205 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a1/ %G en %F SJVM_2005_8_3_a1
A. B. Andreev; M. S. Petrov; T. D. Todorov. General results for lumped mass approximation of isoparametric eigenvalue problem on triangular meshes. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 3, pp. 189-205. http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a1/
[1] Andreev A. B., Kascieva V. A., Vanmaele M., “Some results in lumped mass finite element approximation of eigenvalue problems using numerical quadrature formulas”, J. Comp. Appl. Math., 43 (1992), 291–311 | DOI | MR | Zbl
[2] Andreev A. B., Todorov N. D., “Lumped mass approximation for an isoparametric finite element eigenvalue problem”, Sib. J. Num. Math. / Sib. Branch of Russ. Acad. Sci., 2:4 (1999), 295–308
[3] Andreev A. B., Todorov T. D., “Lumped mass error estimates for an isoparametric finite element eigenvalue problem”, Sib. J. Num. Math. / Sib. Branch of Russ. Acad. Sci., 3:3 (2000), 215–228 | Zbl
[4] Andreev A. B., Todorov T. D., “Isoparametric numerical Integration on triangular finite element meshes”, Comptes rendus de l'Academie bulgare des Sciences, 57:7 (2004), 34–44 | MR
[5] Andreev A. B., Todorov T. D., “Isoparametric finite-element approximation of a Steklov eigenvalue problem”, IMA J. Num. Analysis, 24:2 (2004), 309–322 | DOI | MR | Zbl
[6] Bhattacharyya P. K., “Neela Nataraj Isoparametric mixed finite element approximation of eigenvalues and eigenvectors of 4-th order eigenvalue problems with variable coefficients”, Math. Model. and Num. Analysis, 36:1 (2002), 1–32 | DOI | MR | Zbl
[7] Brenner S. C., Scott L. R., The mathematical theory of finite element methods, Texts in Appl. Math., 15, Springer, 1994 | MR | Zbl
[8] Ciarlet P. G., The Finite Element Method for Elliptic Problems, Amsterdam, 1978 | MR
[9] Ciarlet P. G., Raviart P. A., “Interpolation theory over curved elements, with applications to finite element methods”, Comp. Meth. Appl. Mech. Eng., 1 (1972), 217–249 | DOI | MR | Zbl
[10] Ciarlet P. G., Raviart P. A., “The combined effect of curved boundaries and numerical integration in isoparametric finite element method”, Math. Foundation of the FEM with Applications to PDE, ed. A. K. Aziz, Academic Press, New York, 1972, 409–474 | MR
[11] Chen C. M., Thomée V., “The lumped mass finite element method for a parabolic problem”, J. Austral. Math. Soc. B, 26 (1985), 329–354 | DOI | MR | Zbl
[12] Irons B. M., “Engineering application of numerical integration in stiffness methods”, AIAA J., 11 (1970), 2035–2037
[13] Lebaud M. P., “Error estimate in an isoparametric finite element eigenvalue problem”, Math. Comp., 63:207 (1994), 19–40 | DOI | MR | Zbl
[14] Shajdurov V. V., Finite Element Multigrid Methods, Nauka, Moscow, 1989 (In Russian) | Zbl
[15] Todorov T. D., “21-node 3-simplex isoparametric finite element”, Comptes rendus de l'Academie bulgare des Sciences, 56:1 (2003), 17–24 | MR | Zbl
[16] Todorov T. D., “Convergence analysis for eigenvalue approximations on triangular finite element meshes”, Lecture Notes in Computer Science (to appear)
[17] Vanselow R., “Error estimates of a FEM with lumping for parabolic PDEs”, Computing, 68 (2002), 131–141 | DOI | MR | Zbl