A~functional random walk-on-grid algorithm for the biharmonic equation. The error estimation and optimization
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 2, pp. 163-176.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a functional algorithm of random walk-on-grid as applied to the global solution of the Dirichlet problem for the biharmonic equation. In the metric space $C$, a certain upper error bound is constructed, and optimal values (in the sense of the upper error bound) of the algorithm parameters, i.e., the number of grid nodes and the sample size are obtained. We carry out numerical comparison of efficiency of the algorithm in question and the global random walk on spheres algorithm, based on the use of the fundamental solution to the biharmonic equation for the problem of a bending of a thin elastic plate with a simply supported boundary.
@article{SJVM_2005_8_2_a6,
     author = {E. V. Shkarupa},
     title = {A~functional random walk-on-grid algorithm for the biharmonic equation. {The} error estimation and optimization},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {163--176},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a6/}
}
TY  - JOUR
AU  - E. V. Shkarupa
TI  - A~functional random walk-on-grid algorithm for the biharmonic equation. The error estimation and optimization
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2005
SP  - 163
EP  - 176
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a6/
LA  - ru
ID  - SJVM_2005_8_2_a6
ER  - 
%0 Journal Article
%A E. V. Shkarupa
%T A~functional random walk-on-grid algorithm for the biharmonic equation. The error estimation and optimization
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2005
%P 163-176
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a6/
%G ru
%F SJVM_2005_8_2_a6
E. V. Shkarupa. A~functional random walk-on-grid algorithm for the biharmonic equation. The error estimation and optimization. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 2, pp. 163-176. http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a6/

[1] Mikhailov G.A., Vesovye algoritmy statisticheskogo modelirovaniya, Izd. IVMiMG SO RAN, Novosibirsk, 2003

[2] Mikhailov G. A., Lukinov V. L., “Reshenie mnogomernogo raznostnogo bigarmonicheskogo uravneniya metodom Monte-Karlo”, Sibirskii matem. zhurn., 42:5 (2001), 1125–1135 | MR

[3] Sabelfeld K., Shkarupa E., “Functional Random Walk on Spheres algorithm for biharmonic equation: optimization and error estimation”, Monte Carlo Methods and Application, 9:1 (2003), 51–65 | DOI | MR | Zbl

[4] Sabelfeld K., Shkarupa E., Functional Random Walk on Spheres algorithm for biharmonic equation: optimization and error estimation, Preprint WIAS; 826, Berlin, 2003 ; http://www.wias-berlin.de/publications/preprints/826.html | MR

[5] Mikhailov G. A., Vesovye metody Monte-Karlo, Izd-vo SO RAN, Novosibirsk, 2000 | MR

[6] Mikhailov G. A., Cheshkova A. F., “Reshenie raznostnoi zadachi Dirikhle dlya mnogomernogo uravneniya Gelmgoltsa metodom Monte-Karlo”, Zhurn. vychisl. matem. i mat. fiziki, 38:1 (1998), 99–106

[7] Voytishek A. V., “On the errors of discretely stochastic procedures in estimating globally the solution of an integral equation of the second kind”, Russ. J. Numer. Anal. and Math. Modelling, 11:1 (1996), 71–92 | DOI | MR | Zbl

[8] Shkarupa E. V., Voytishek A. V., “Optimization of discretely stochastic procedures for globally estimating the solution of an integral equation of the second kind”, Russ. J. Numer. Anal. and Math. Modelling, 12:6 (1997), 525–546 | DOI | MR | Zbl

[9] Voitishek A. V., “Asimptotika skhodimosti diskretno-stokhasticheskikh chislennykh metodov globalnoi otsenki resheniya integralnogo uravneniya vtorogo roda”, Sib. matem. zhurn., 35:4 (1994), 728–736 | MR | Zbl

[10] Mikhailov G. A., Minimization of computational costs of non-analogue Monte Carlo methods, Series of Soviet and East European Mathematics, 5, World Scientific, Singapore, 1991 | MR

[11] Mikhailov G. A., Parametric Estimates by the Monte Carlo Method, VSP, Utrecht, 1995 | MR | Zbl

[12] Shkarupa E. V., “Otsenka pogreshnosti i optimizatsiya metoda poligona chastot dlya globalnogo resheniya integralnogo uravneniya vtorogo roda”, Zhurn. vychisl. matem. i mat. fiziki, 38:4 (1998), 612–626 | MR

[13] Plotnikov M. Yu., Shkarupa E. V., “Error estimation and optimization in $C$-space of Monte Carlo iterative solution of nonlinear integral equations”, Monte Carlo Methods and Application, 4:1 (1998), 53–70 | DOI | MR

[14] Shkarupa E. V., “Otsenka pogreshnosti i optimizatsiya funktsionalnykh algoritmov bluzhdaniya po reshetke resheniya zadachi Dirikhle dlya uravneniya Gelmgoltsa”, Sib. matem. zhurn., 44:5 (2003), 1163–1182 | MR | Zbl

[15] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[16] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[17] Litbetter M., Rotsen Kh., Lindgren G., Ekstremumy sluchainykh posledovatelnostei i protsessov, Mir, M., 1989 | MR

[18] Spitser F., Printsipy sluchainogo bluzhdaniya, Mir, M., 1969

[19] Rozanov Yu. A., Teoriya veroyatnostei, sluchainye protsessy i matematicheskaya statistika, Nauka, M., 1989 | MR

[20] Sabelfeld K. K., Metody Monte-Karlo v kraevykh zadachakh, Nauka, Novosibirsk, 1989 | MR

[21] Timoshenko S. P., Voinovsky-Krieger, Theory of Plates and Shells, McGRAW-HILL Book Company, Inc., New York etc., 1959