Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2005_8_2_a3, author = {M. R. Larin}, title = {Using a~compensation principle in the algebraic multilevel iteration method for finite element matrices}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {127--142}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a3/} }
TY - JOUR AU - M. R. Larin TI - Using a~compensation principle in the algebraic multilevel iteration method for finite element matrices JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2005 SP - 127 EP - 142 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a3/ LA - en ID - SJVM_2005_8_2_a3 ER -
%0 Journal Article %A M. R. Larin %T Using a~compensation principle in the algebraic multilevel iteration method for finite element matrices %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2005 %P 127-142 %V 8 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a3/ %G en %F SJVM_2005_8_2_a3
M. R. Larin. Using a~compensation principle in the algebraic multilevel iteration method for finite element matrices. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 2, pp. 127-142. http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a3/
[1] Apel T., Anisotropic finite elements: Local estimates and applications, Advances in Num. Math., Teubner, Stutgart–Leipzig, 1999 | MR | Zbl
[2] Axelsson O., Vassilevski P., “Algebraic multilevel preconditioning methods I”, Numer. Math., 56 (1989), 157–177 | DOI | MR | Zbl
[3] Axelsson O., Vassilevski P., “Algebraic multilevel preconditioning methods II”, SIAM J. Numer. Anal., 27 (1990), 1569–1590 | DOI | MR | Zbl
[4] Axelsson O., Eijkhout V., “The nested recursive two-level factorization method for nine-point difference matrices”, SIAM J. Sci. Stat. Comp., 12 (1991), 1373–1400 | DOI | MR | Zbl
[5] Axelsson O., Neytcheva M., “Algebraic multilevel iteration method for Stieltjes matrices”, Numer. Lin. Alg. Appl., 1 (1994), 213–236 | DOI | MR | Zbl
[6] Axelsson O., Larin M., “An algebraic multilevel iteration method for finite element matrices”, J. Comp. Appl. Math., 89 (1997), 135–153 | DOI | MR
[7] Axelsson O., Larin M., “An element-by-element version of variable-step multilevel preconditioning methods”, Sib. J. Num. Math. / Sib. Branch of Russ. Acad. Sci., 6:3 (2003), 209–226 | Zbl
[8] Axelsson O., Padiy A., “On the additive version of the algebraic multilevel iteration method for anisotropic elliptic problems”, SIAM J. Sci. Comput., 20 (1999), 1807–1830 | DOI | MR | Zbl
[9] Larin M., “An algebraic multilevel iterative method of incomplete factorization for Stieltjes matrices”, Comput. Math. Math. Physics, 38 (1998), 1011–1025 | MR | Zbl
[10] Notay Y., Ould Amar Z., “A nearly optimal preconditioning based on recursive red-black orderings”, Num. Lin. Alg. Appl., 4 (1997), 369–391 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[11] Vassilevski P., “Hybrid V-cycle algebraic multilevel preconditioners”, Math. Comp., 58 (1992), 489–512 | DOI | MR | Zbl