Approximation by local parabolic splines with arbitrary knots
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 1, pp. 77-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the class of the functions $W_{\infty}^2$ with almost bounded second derivatives, a new linear local method of parabolic spline approximation on an arbitrary grid is constructed. This method has some smoothing properties and inherits the monotonicity and the convexity of the initial data (values of a function at the grid points). On this class the error of approximation by the splines constructed is exactly calculated.
@article{SJVM_2005_8_1_a6,
     author = {V. T. Shevaldin},
     title = {Approximation by local parabolic splines with arbitrary knots},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {77--88},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a6/}
}
TY  - JOUR
AU  - V. T. Shevaldin
TI  - Approximation by local parabolic splines with arbitrary knots
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2005
SP  - 77
EP  - 88
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a6/
LA  - ru
ID  - SJVM_2005_8_1_a6
ER  - 
%0 Journal Article
%A V. T. Shevaldin
%T Approximation by local parabolic splines with arbitrary knots
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2005
%P 77-88
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a6/
%G ru
%F SJVM_2005_8_1_a6
V. T. Shevaldin. Approximation by local parabolic splines with arbitrary knots. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 1, pp. 77-88. http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a6/

[1] Lyche T., Schumaker L. L., “Local spline approximation methods”, J. Approxim. Theory, 15:4 (1975), 294–325 | DOI | MR | Zbl

[2] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[3] Kvasov B. I., Izogeometricheskaya approksimatsiya splainami: Ucheb. posobie, Novosibirskii un-t, Novosibirsk, 1998

[4] Subbotin Yu. N., “Nasledovanie svoistv monotonnosti i vypuklosti pri lokalnoi approksimatsii”, ZhVMiMF, 33:7 (1993), 996–1003 | MR | Zbl

[5] Dzybenko G., Gilewicz J., Shevchuk I., “Piecewise monotone point wise approximation”, Const. Approximation, 4:3 (1998), 311–348 | DOI

[6] Miroshnichenko V. L., “Dostatochnye usloviya monotonnosti i vypuklosti dlya interpolyatsionnykh parabolicheskikh splainov”, Vychislitelnye sistemy, 142 (1991), 3–14 | MR

[7] Subbotin Yu. N., Chernykh N. I., “Poryadok nailuchshei splain-approksimatsii nekotorykh klassov funktsii”, Matem. zametki, 7:1 (1970), 31–42 | MR | Zbl