Generalization of the Runge--Kutta methods and their application tointegration of initial-boundary value problems of mathematical physics
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 1, pp. 57-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

An idea is proposed and tested to generalize the Runge–Kutta methods to a bidimensional case for the approximate integration of the initial-boundary value problems corresponding to the partial differential equations. It is shown that some classical finite difference schemes of integration of the equation of transport and non-stationary one-dimensional heat conductivity can be obtained as consequence of such generalization. New schemes of high orders of accuracy for various problems of mathematical physics are obtained. Stability of these schemes is proved, and results of calculations for problems with large gradients of the solution are presented. On concrete examples it is shown that classical schemes of low orders of accuracy unsatisfactorily describe solutions of such problems, and the schemes of high orders constructed by means of the generalized Runge–Kutta methods presented, give a good approximation to exact solutions.
@article{SJVM_2005_8_1_a5,
     author = {Yu. V. Nemirovskii and A. P. Yankovskii},
     title = {Generalization of the {Runge--Kutta} methods and their application tointegration of initial-boundary value problems of mathematical physics},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {57--76},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a5/}
}
TY  - JOUR
AU  - Yu. V. Nemirovskii
AU  - A. P. Yankovskii
TI  - Generalization of the Runge--Kutta methods and their application tointegration of initial-boundary value problems of mathematical physics
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2005
SP  - 57
EP  - 76
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a5/
LA  - ru
ID  - SJVM_2005_8_1_a5
ER  - 
%0 Journal Article
%A Yu. V. Nemirovskii
%A A. P. Yankovskii
%T Generalization of the Runge--Kutta methods and their application tointegration of initial-boundary value problems of mathematical physics
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2005
%P 57-76
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a5/
%G ru
%F SJVM_2005_8_1_a5
Yu. V. Nemirovskii; A. P. Yankovskii. Generalization of the Runge--Kutta methods and their application tointegration of initial-boundary value problems of mathematical physics. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 1, pp. 57-76. http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a5/

[1] Rabotnov Yu. V., Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1979

[2] Andreev A. N., Nemirovskii Yu. V., Mnogosloinye anizotropnye obolochki i plastiny. Izgib, ustoichivost i kolebaniya, Nauka, Novosibirsk, 2001 | Zbl

[3] Nemirovskii Yu. V., Yankovskii A. P., Ratsionalnoe proektirovanie armirovannykh konstruktsii, Nauka, Novosibirsk, 2002 | Zbl

[4] Dekker K., Verver Ya., Ustoichivost metodov Runge–Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988 | MR

[5] Berezin I. S., Zhidkov N. P., Metody vychislenii, T. 2, Fizmatgiz, M., 1959 | Zbl

[6] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[7] Shu C.-W., Osher S., “Efficient implementation of essentially non-oscillatory shock-capturing schemes”, J. Comp. Phys., 77:2 (1988), 439–471 | DOI | MR | Zbl

[8] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Gos. izd. tekhniko-teoretich. lit., M.-L., 1948

[9] Ryabenkii V. S., Filippov A. F., Ob ustoichivosti raznostnykh uravnenii, Gos. izd. tekhniko-teoretich. lit., M., 1956 | MR

[10] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977

[11] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[12] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1969