On the $p$-version of the finite element method for the boundary value problem with singularity
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 1, pp. 31-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

The one-dimensional first-type boundary value problem for the second order differential equation with strong singularity of a solution caused by coordinated degeneration of input data at the origin is considered. For this problem we define the solution as $R_{\nu}$-generalized one. It has been proved that solution belongs to the weighted Sobolev space $H^3_{2,\nu+\beta/2+1}$ under proper assumptions for coefficients and the right-hand side of the differential equation. The scheme of the finite element method is constructed on a fixed mesh using polynomials of an arbitrary degree $p$ (the $p$-version of the finite element method). The finite element space contains singular polynomials. Using the regularity of $R_{\nu}$-generalized solution, the estimate for the rate of convergence of the second order with respect to the degree $p$ of polynomials is proved in the norm of the weighted Sobolev space.
@article{SJVM_2005_8_1_a3,
     author = {E. V. Kashuba and V. A. Rukavishnikov},
     title = {On the $p$-version of the finite element method for the boundary value problem with singularity},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {31--42},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a3/}
}
TY  - JOUR
AU  - E. V. Kashuba
AU  - V. A. Rukavishnikov
TI  - On the $p$-version of the finite element method for the boundary value problem with singularity
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2005
SP  - 31
EP  - 42
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a3/
LA  - en
ID  - SJVM_2005_8_1_a3
ER  - 
%0 Journal Article
%A E. V. Kashuba
%A V. A. Rukavishnikov
%T On the $p$-version of the finite element method for the boundary value problem with singularity
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2005
%P 31-42
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a3/
%G en
%F SJVM_2005_8_1_a3
E. V. Kashuba; V. A. Rukavishnikov. On the $p$-version of the finite element method for the boundary value problem with singularity. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 1, pp. 31-42. http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a3/

[1] Russian Acad. Sci. Dokl. Math., 50:2 (1995), 335–339 | MR | Zbl

[2] Rukavishnikov V. A., Rukavishnikova H. I., “The finite element method for the third boundary value problem with strong singularity of solution”, ENUMATH 97. Proc. of the Second European Conference on Numerical Mathematics and Advanced Applications, World Scientific, Singapore, 1998, 540–548 | MR | Zbl

[3] Bespalov A. Yu., Rukavishnikov V. A., “The use of singular functions in the $h-p$ version of the finite element method for a Dirichlet problem with degeneration of the input data”, Siberian J. of Numer. Mathematics / Sib. Branch of Russ. Acad. of Sci. – Novosibirsk, 4:3 (2001), 201–228 | MR | Zbl

[4] Rukavishnikov V. A., “On the Dirichlet problem for the second order elliptic equation with non-coordinated degeneration of initial data”, Differencialnye Uravneniya, 32:3 (1996), 402–408 (in Russian) | MR | Zbl

[5] Soviet Math., Dokl., 40:3 (1990), 653–655 | MR | Zbl

[6] Rukavishnikov V. A., On the $R_\nu$-generalized solution of the Dirichlet problem in a rectangle, Preprint Computing Center, Far-Eastern Branch Acad. Sci. USSR, Vladivostok, 1989 (in Russian) | Zbl

[7] Agmon S., Douglis A., Nirenberg L., Estimates Near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions, Inostrannaya Literatura, Moscow, 1962 (in Russian)

[8] Rukavishnikov V. A., Kashuba E. V., “On the properties of an orthonormalized singular polynomials set”, Siberian J. of Numer. Mathematics / Sib. Branch of Russ. Acad. of Sci. — Novosibirsk, 2:2 (1999), 171–183 | Zbl

[9] Ciarlet P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978 | MR | Zbl

[10] Suetin P. K., The Classical Orthogonal Polynomials, Nauka, Moscow, 1979 (in Russian) | MR | Zbl

[11] M. Abramowitz, I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Nauka, Moscow, 1979 (in Russian) | MR | Zbl

[12] Rukavishnikov V. A., Bespalov A. Yu., “On the $h-p$ version of the finite element method for one-dimensional boundary value problem with singularity of a solution”, Siberian J. of Numer. Mathematics / Sib. Branch of Russ. Acad. of Sci. — Novosibirsk, 1:2 (1998), 153–170 | MR | Zbl

[13] Babuška I., Suri M. “The optimal convergence rate of the $p$-version of the finite element method”, SIAM J. Numer. Anal., 24:4 (1987), 750–776 | DOI | MR | Zbl