Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2005_8_1_a3, author = {E. V. Kashuba and V. A. Rukavishnikov}, title = {On the $p$-version of the finite element method for the boundary value problem with singularity}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {31--42}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a3/} }
TY - JOUR AU - E. V. Kashuba AU - V. A. Rukavishnikov TI - On the $p$-version of the finite element method for the boundary value problem with singularity JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2005 SP - 31 EP - 42 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a3/ LA - en ID - SJVM_2005_8_1_a3 ER -
%0 Journal Article %A E. V. Kashuba %A V. A. Rukavishnikov %T On the $p$-version of the finite element method for the boundary value problem with singularity %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2005 %P 31-42 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a3/ %G en %F SJVM_2005_8_1_a3
E. V. Kashuba; V. A. Rukavishnikov. On the $p$-version of the finite element method for the boundary value problem with singularity. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 1, pp. 31-42. http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a3/
[1] Russian Acad. Sci. Dokl. Math., 50:2 (1995), 335–339 | MR | Zbl
[2] Rukavishnikov V. A., Rukavishnikova H. I., “The finite element method for the third boundary value problem with strong singularity of solution”, ENUMATH 97. Proc. of the Second European Conference on Numerical Mathematics and Advanced Applications, World Scientific, Singapore, 1998, 540–548 | MR | Zbl
[3] Bespalov A. Yu., Rukavishnikov V. A., “The use of singular functions in the $h-p$ version of the finite element method for a Dirichlet problem with degeneration of the input data”, Siberian J. of Numer. Mathematics / Sib. Branch of Russ. Acad. of Sci. – Novosibirsk, 4:3 (2001), 201–228 | MR | Zbl
[4] Rukavishnikov V. A., “On the Dirichlet problem for the second order elliptic equation with non-coordinated degeneration of initial data”, Differencialnye Uravneniya, 32:3 (1996), 402–408 (in Russian) | MR | Zbl
[5] Soviet Math., Dokl., 40:3 (1990), 653–655 | MR | Zbl
[6] Rukavishnikov V. A., On the $R_\nu$-generalized solution of the Dirichlet problem in a rectangle, Preprint Computing Center, Far-Eastern Branch Acad. Sci. USSR, Vladivostok, 1989 (in Russian) | Zbl
[7] Agmon S., Douglis A., Nirenberg L., Estimates Near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions, Inostrannaya Literatura, Moscow, 1962 (in Russian)
[8] Rukavishnikov V. A., Kashuba E. V., “On the properties of an orthonormalized singular polynomials set”, Siberian J. of Numer. Mathematics / Sib. Branch of Russ. Acad. of Sci. — Novosibirsk, 2:2 (1999), 171–183 | Zbl
[9] Ciarlet P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978 | MR | Zbl
[10] Suetin P. K., The Classical Orthogonal Polynomials, Nauka, Moscow, 1979 (in Russian) | MR | Zbl
[11] M. Abramowitz, I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Nauka, Moscow, 1979 (in Russian) | MR | Zbl
[12] Rukavishnikov V. A., Bespalov A. Yu., “On the $h-p$ version of the finite element method for one-dimensional boundary value problem with singularity of a solution”, Siberian J. of Numer. Mathematics / Sib. Branch of Russ. Acad. of Sci. — Novosibirsk, 1:2 (1998), 153–170 | MR | Zbl
[13] Babuška I., Suri M. “The optimal convergence rate of the $p$-version of the finite element method”, SIAM J. Numer. Anal., 24:4 (1987), 750–776 | DOI | MR | Zbl