Solving systems of nonlinear equations by the parametric approach with an arbitrary initial point
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 1, pp. 11-22

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a number of algorithms for solving systems of nonlinear equations, when a good approximation to solution is unknown, and the Newton method is not efficient. These methods are based on the choice of weights for an auxiliary function and on the descent in the space of weights. The convergence depends on relations between the measures of regions of attraction of the solutions. In order to improve the performance, we consider perturbation methods.
@article{SJVM_2005_8_1_a1,
     author = {M. Yu. Andramonov},
     title = {Solving systems of nonlinear equations by the parametric approach with an arbitrary initial point},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {11--22},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a1/}
}
TY  - JOUR
AU  - M. Yu. Andramonov
TI  - Solving systems of nonlinear equations by the parametric approach with an arbitrary initial point
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2005
SP  - 11
EP  - 22
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a1/
LA  - ru
ID  - SJVM_2005_8_1_a1
ER  - 
%0 Journal Article
%A M. Yu. Andramonov
%T Solving systems of nonlinear equations by the parametric approach with an arbitrary initial point
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2005
%P 11-22
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a1/
%G ru
%F SJVM_2005_8_1_a1
M. Yu. Andramonov. Solving systems of nonlinear equations by the parametric approach with an arbitrary initial point. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 1, pp. 11-22. http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a1/