Numerical solution to stochastic differential equations with growing variance
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 1, pp. 1-10
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper considers a new method for transition from an initial unstable in the mean square SDE system to the SDE system with a solution close to a stationary process. The SDE systems for a stochastic component are obtained with the use of the Ito formula both in the case of linear and nonlinear initial SDE systems.
@article{SJVM_2005_8_1_a0,
author = {T. A. Averina and S. S. Artem'ev},
title = {Numerical solution to stochastic differential equations with growing variance},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {1--10},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a0/}
}
TY - JOUR AU - T. A. Averina AU - S. S. Artem'ev TI - Numerical solution to stochastic differential equations with growing variance JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2005 SP - 1 EP - 10 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a0/ LA - ru ID - SJVM_2005_8_1_a0 ER -
T. A. Averina; S. S. Artem'ev. Numerical solution to stochastic differential equations with growing variance. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 1, pp. 1-10. http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a0/