Numerical solution to stochastic differential equations with growing variance
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 1, pp. 1-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers a new method for transition from an initial unstable in the mean square SDE system to the SDE system with a solution close to a stationary process. The SDE systems for a stochastic component are obtained with the use of the Ito formula both in the case of linear and nonlinear initial SDE systems.
@article{SJVM_2005_8_1_a0,
     author = {T. A. Averina and S. S. Artem'ev},
     title = {Numerical solution to stochastic differential equations with growing variance},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {1--10},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a0/}
}
TY  - JOUR
AU  - T. A. Averina
AU  - S. S. Artem'ev
TI  - Numerical solution to stochastic differential equations with growing variance
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2005
SP  - 1
EP  - 10
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a0/
LA  - ru
ID  - SJVM_2005_8_1_a0
ER  - 
%0 Journal Article
%A T. A. Averina
%A S. S. Artem'ev
%T Numerical solution to stochastic differential equations with growing variance
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2005
%P 1-10
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a0/
%G ru
%F SJVM_2005_8_1_a0
T. A. Averina; S. S. Artem'ev. Numerical solution to stochastic differential equations with growing variance. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 1, pp. 1-10. http://geodesic.mathdoc.fr/item/SJVM_2005_8_1_a0/

[1] Kramer G., Matematicheskie metody statistiki, Mir, M., 1975 | MR

[2] Ermakov S. M., Mikhailov G. A., Kurs statisticheskogo modelirovaniya, Nauka, M., 1976 | MR

[3] Artemiev S. S., Averina T. A., Numerical analysis of systems of ordinary and stochastic differential equation, VSP, Utrecht, The Netherlands, 1997 | MR | Zbl

[4] Khasminskii R. Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969 | MR

[5] Malakhov A. N., Kumulyantnyi analiz sluchainykh negaussovykh protsessov i ikh preobrazovanii, Sov. radio, M., 1978 | MR | Zbl

[6] Dynkin E. B., Markovskie protsessy, Fizmatgiz, M., 1963 | MR