Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2004_7_4_a3, author = {S. E. Zhelezovsky}, title = {On error estimates for schemes of the projection-difference method for hyperbolic equations}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {309--325}, publisher = {mathdoc}, volume = {7}, number = {4}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2004_7_4_a3/} }
TY - JOUR AU - S. E. Zhelezovsky TI - On error estimates for schemes of the projection-difference method for hyperbolic equations JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2004 SP - 309 EP - 325 VL - 7 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2004_7_4_a3/ LA - ru ID - SJVM_2004_7_4_a3 ER -
S. E. Zhelezovsky. On error estimates for schemes of the projection-difference method for hyperbolic equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 4, pp. 309-325. http://geodesic.mathdoc.fr/item/SJVM_2004_7_4_a3/
[1] Lyashko A. D., Zhelezovskii S. E., “Korrektnost odnoi operatorno-differentsialnoi skhemy i obosnovanie metoda Galerkina dlya giperbolicheskikh uravnenii”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd.-nie. — Novosibirsk, 3:4 (2000), 357–368 | MR | Zbl
[2] Dupont T., “$L^2$-estimates for Galerkin methods for second order hyperbolic equations”, SIAM J. Numer. Anal., 10:5 (1973), 880–889 | DOI | MR | Zbl
[3] Baker G. A., “Error estimates for finite element methods for second order hyperbolic equations”, SIAM J. Numer. Anal., 13:4 (1976), 564–576 | DOI | MR | Zbl
[4] Geveci T., “On the convergence of Galerkin approximation schemes for second order hyperbolic equations in energy and negative norms”, Math. Comput., 42:166 (1984), 393–415 | DOI | MR | Zbl
[5] Zlotnik A. A., “Otsenki skorosti skhodimosti proektsionno-setochnykh metodov dlya giperbolicheskikh uravnenii vtorogo poryadka”, Vychislitelnye protsessy i sistemy, Vyp. 8, Nauka, M., 1991, 116–167 | MR
[6] Zhelezovskii S. E., “Otsenki skorosti skhodimosti proektsionno-raznostnogo metoda dlya giperbolicheskikh uravnenii”, Izv. vuzov. Matematika, 2002, no. 1, 21–30 | MR | Zbl
[7] Dendy J. E., Jr., “An analysis of some Galerkin schemes for the solution of nonlinear timedependent problems”, SIAM J. Numer. Anal., 12:4 (1975), 541–565 | DOI | MR | Zbl
[8] Baker G. A., Dougalis V. A., Karakashian O., “On multistep-Galerkin discretizations of semilinear hyperbolic and parabolic equations”, Nonlinear Anal., Theory, Meth. and Appl., 4:3 (1980), 579–597 | DOI | MR | Zbl
[9] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR
[10] Samarskii A. A., Teoriya raznostnykh skhem, 3-e izd., Nauka, M., 1989 | MR
[11] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973 | Zbl
[12] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR
[13] Lapin A. V., Lyashko A. D., “Issledovanie raznostnykh skhem dlya odnogo klassa kvazilineinykh parabolicheskikh uravnenii”, Izv. vuzov. Matematika, 1973, no. 1, 71–77 | Zbl
[14] Lyashko A. D., Fedotov E. M., “Korrektnost odnogo klassa konservativnykh nelineinykh operatorno-raznostnykh skhem”, Izv. vuzov. Matematika, 1985, no. 10, 47–55 | MR | Zbl
[15] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR
[16] Kadlets Ya., “O regulyarnosti resheniya zadachi Puassona na oblasti s granitsei, lokalno podobnoi granitse vypukloi oblasti”, Chekhosl. matem. zhurn., 14:3 (1964), 386–393
[17] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, 2-e izd., Nauka, M., 1973 | MR
[18] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, 3-e izd., Nauka, M., 1988 | MR
[19] Mikhlin S. G., “Po povodu metoda Rittsa”, Dokl. AN SSSR, 106:3 (1956), 391–394 | MR