On error estimates for schemes of the projection-difference method for hyperbolic equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 4, pp. 309-325.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the convergence of a three-level scheme of the projection-difference method for an abstract quasi-linear hyperbolic equation. We establish asymptotic energy estimates for the error. The order of these estimates is unimprovable. A preliminary result on the conditional stability of the scheme ($W$-stability in the sense of the definition formulated in the paper) forms the basis of our derivation of the estimates. We illustrate the use of our general results by an example of a scheme with finite element space discretization applied to the first initial boundary-value problem for a second-order hyperbolic equation. We also note the possibility of application of our general results in the case when the space discretization is realized by the Galerkin method in the form of Mikhlin.
@article{SJVM_2004_7_4_a3,
     author = {S. E. Zhelezovsky},
     title = {On error estimates for schemes of the projection-difference method for hyperbolic equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {309--325},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2004_7_4_a3/}
}
TY  - JOUR
AU  - S. E. Zhelezovsky
TI  - On error estimates for schemes of the projection-difference method for hyperbolic equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2004
SP  - 309
EP  - 325
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2004_7_4_a3/
LA  - ru
ID  - SJVM_2004_7_4_a3
ER  - 
%0 Journal Article
%A S. E. Zhelezovsky
%T On error estimates for schemes of the projection-difference method for hyperbolic equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2004
%P 309-325
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2004_7_4_a3/
%G ru
%F SJVM_2004_7_4_a3
S. E. Zhelezovsky. On error estimates for schemes of the projection-difference method for hyperbolic equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 4, pp. 309-325. http://geodesic.mathdoc.fr/item/SJVM_2004_7_4_a3/

[1] Lyashko A. D., Zhelezovskii S. E., “Korrektnost odnoi operatorno-differentsialnoi skhemy i obosnovanie metoda Galerkina dlya giperbolicheskikh uravnenii”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd.-nie. — Novosibirsk, 3:4 (2000), 357–368 | MR | Zbl

[2] Dupont T., “$L^2$-estimates for Galerkin methods for second order hyperbolic equations”, SIAM J. Numer. Anal., 10:5 (1973), 880–889 | DOI | MR | Zbl

[3] Baker G. A., “Error estimates for finite element methods for second order hyperbolic equations”, SIAM J. Numer. Anal., 13:4 (1976), 564–576 | DOI | MR | Zbl

[4] Geveci T., “On the convergence of Galerkin approximation schemes for second order hyperbolic equations in energy and negative norms”, Math. Comput., 42:166 (1984), 393–415 | DOI | MR | Zbl

[5] Zlotnik A. A., “Otsenki skorosti skhodimosti proektsionno-setochnykh metodov dlya giperbolicheskikh uravnenii vtorogo poryadka”, Vychislitelnye protsessy i sistemy, Vyp. 8, Nauka, M., 1991, 116–167 | MR

[6] Zhelezovskii S. E., “Otsenki skorosti skhodimosti proektsionno-raznostnogo metoda dlya giperbolicheskikh uravnenii”, Izv. vuzov. Matematika, 2002, no. 1, 21–30 | MR | Zbl

[7] Dendy J. E., Jr., “An analysis of some Galerkin schemes for the solution of nonlinear timedependent problems”, SIAM J. Numer. Anal., 12:4 (1975), 541–565 | DOI | MR | Zbl

[8] Baker G. A., Dougalis V. A., Karakashian O., “On multistep-Galerkin discretizations of semilinear hyperbolic and parabolic equations”, Nonlinear Anal., Theory, Meth. and Appl., 4:3 (1980), 579–597 | DOI | MR | Zbl

[9] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[10] Samarskii A. A., Teoriya raznostnykh skhem, 3-e izd., Nauka, M., 1989 | MR

[11] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973 | Zbl

[12] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[13] Lapin A. V., Lyashko A. D., “Issledovanie raznostnykh skhem dlya odnogo klassa kvazilineinykh parabolicheskikh uravnenii”, Izv. vuzov. Matematika, 1973, no. 1, 71–77 | Zbl

[14] Lyashko A. D., Fedotov E. M., “Korrektnost odnogo klassa konservativnykh nelineinykh operatorno-raznostnykh skhem”, Izv. vuzov. Matematika, 1985, no. 10, 47–55 | MR | Zbl

[15] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[16] Kadlets Ya., “O regulyarnosti resheniya zadachi Puassona na oblasti s granitsei, lokalno podobnoi granitse vypukloi oblasti”, Chekhosl. matem. zhurn., 14:3 (1964), 386–393

[17] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, 2-e izd., Nauka, M., 1973 | MR

[18] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, 3-e izd., Nauka, M., 1988 | MR

[19] Mikhlin S. G., “Po povodu metoda Rittsa”, Dokl. AN SSSR, 106:3 (1956), 391–394 | MR