Multiresolution analysis in the space $\ell^2(\mathbb Z)$ using discrete splines
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 3, pp. 261-275

Voir la notice de l'article provenant de la source Math-Net.Ru

A non-stationary multiresolution analysis $\{V_k\}_{k\geq 0}$ $\ell^2(\mathbb Z)$ in the space $\ell^2(\mathbb Z)$ is performed, the subspaces $V_k$ consisting of discrete splines. In each $V_k$, there is a function $\varphi_k$ such that the system $\{\varphi_k(\cdot-l2^k):l\in\mathbb Z\}$ forms the Riesz base of $V_k$. A system of wavelets $\psi_{kl}(j)=\psi_k(j-l2^k)$, $l\in\mathbb Z$, $k=1,2\dots$ is not generated by shifts and dilations of the unique function. The subspaces $W_k=\operatorname{span}\{\psi_{kl}:l\in\mathbb Z\}$ form an orthogonal expansion of the space: $\ell^2(\mathbb Z)=\oplus^{\infty}_{k=1}W_k$. The space $V_k$ is the same as the space of discrete splines $S_{p,2^k}$ of order $p$ with a distance between the knots $2^k$. For every $p$, a multiresolution analysis is obtained (for $p=1$ – the Haar multiresolution analysis).
@article{SJVM_2004_7_3_a7,
     author = {A. B. Pevnyi},
     title = {Multiresolution analysis in the space $\ell^2(\mathbb Z)$ using discrete splines},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {261--275},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2004_7_3_a7/}
}
TY  - JOUR
AU  - A. B. Pevnyi
TI  - Multiresolution analysis in the space $\ell^2(\mathbb Z)$ using discrete splines
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2004
SP  - 261
EP  - 275
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2004_7_3_a7/
LA  - ru
ID  - SJVM_2004_7_3_a7
ER  - 
%0 Journal Article
%A A. B. Pevnyi
%T Multiresolution analysis in the space $\ell^2(\mathbb Z)$ using discrete splines
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2004
%P 261-275
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2004_7_3_a7/
%G ru
%F SJVM_2004_7_3_a7
A. B. Pevnyi. Multiresolution analysis in the space $\ell^2(\mathbb Z)$ using discrete splines. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 3, pp. 261-275. http://geodesic.mathdoc.fr/item/SJVM_2004_7_3_a7/