Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2004_7_3_a5, author = {I. A Moughrabi}, title = {Symmetric-rank-one multi-step {quasi-Newton} implicit update algorithms}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {241--248}, publisher = {mathdoc}, volume = {7}, number = {3}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SJVM_2004_7_3_a5/} }
I. A Moughrabi. Symmetric-rank-one multi-step quasi-Newton implicit update algorithms. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 3, pp. 241-248. http://geodesic.mathdoc.fr/item/SJVM_2004_7_3_a5/
[1] Ford J. A., “Implicit updates in multi-step quasi-Newton methods”, Comput. Math. Appl., 42 (2001), 1083–1091 | DOI | MR | Zbl
[2] Ford J. A., Moghrabi I. A., “Alternating multi-step quasi-Newton methods for unconstrained optimization”, J. Comput. Appl. Math., 82 (1997), 105–116 | DOI | MR | Zbl
[3] Ford J. A., Moghrabi I. A., “Alternative parameter choices for multi-step quasi-Newton methods”, Optimization Methods and Software, 2 (1993), 357–370 | DOI | MR
[4] Broyden C. G., “The convergence of a class of double-rank minimization algorithms. Part 2: The new algorithm”, J. Inst. Math. Appl., 6 (1970), 222–231 | DOI | MR | Zbl
[5] Fletcher R., “A new approach to variable metric algorithms”, Comput. J., 13 (1970), 317–322 | DOI | Zbl
[6] Goldfarb G., “A family of variable metric methods derived by variational means”, Math. Comp., 24 (1970), 23–26 | DOI | MR | Zbl
[7] Shanno D. F., “Conditioning of quasi-Newton methods for function minimization”, Math. Comp., 24 (1970), 647–656 | DOI | MR
[8] Fletcher R., Practical Methods of Optimization, 2nd ed., Wiley, New York, 1987 | MR
[9] Shanno D. F., Phua K. H., “Matrix conditioning and nonlinear optimization”, Math. Prog., 14 (1978), 149–160 | DOI | MR | Zbl
[10] Ford J. A., Moghrabi I. A., “Multi-step quasi-Newton methods for optimization”, J. Comput. Appl. Math., 50 (1994), 305–323 | DOI | MR | Zbl
[11] Ford J. A., Moghrabi L. A., “Minimum curvature multi-step quasi-Newton methods”, Comput. Math. Appl., 31 (1996), 179–186 | DOI | MR | Zbl
[12] Dennis J. E., Schnabel R. B., “Least change secant updates for quasi-Newton methods”, SIAM Review, 21 (1979), 443–459 | DOI | MR | Zbl
[13] More J. J., Garbow B. S., Hillstrom K. E., “Testing unconstrained optimization software”, ACM Trans. Math. Software, 7 (1981), 17–41 | DOI | MR | Zbl
[14] Conn A. R., Gould N. I. M., Toint Ph. L., Testing a class of methods for solving minimization problems with simple bounds on the variables, Research Report CS-86-45, University of Waterloo, 1986
[15] Toint Ph. L., “On large scale nonlinear least squares calculations”, SIAM J. Sci. Stat. Comput., 8 (1987), 416–435 | DOI | MR | Zbl