Numerical models of binary random fields on the basis of thresholds of Gaussian functions
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 2, pp. 165-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a few numerical models of binary stochastic fields based on the thresholds of Gaussian functions and discuss the results of numerical experiments on estimating the models' parameters and simulation of the observed data. The considered models can be used, in particular, for texture analysis and synthesis, for simulation of stochastic structure of clouds in the atmosphere, as well as for solving other problems when statistical analysis and construction of binary random fields are a part of research.
@article{SJVM_2004_7_2_a6,
     author = {S. M. Prigarin and A. Martin and G. Winkler},
     title = {Numerical models of binary random fields on the basis of thresholds of {Gaussian} functions},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {165--175},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a6/}
}
TY  - JOUR
AU  - S. M. Prigarin
AU  - A. Martin
AU  - G. Winkler
TI  - Numerical models of binary random fields on the basis of thresholds of Gaussian functions
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2004
SP  - 165
EP  - 175
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a6/
LA  - en
ID  - SJVM_2004_7_2_a6
ER  - 
%0 Journal Article
%A S. M. Prigarin
%A A. Martin
%A G. Winkler
%T Numerical models of binary random fields on the basis of thresholds of Gaussian functions
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2004
%P 165-175
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a6/
%G en
%F SJVM_2004_7_2_a6
S. M. Prigarin; A. Martin; G. Winkler. Numerical models of binary random fields on the basis of thresholds of Gaussian functions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 2, pp. 165-175. http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a6/

[1] Kargin B. A., Prigarin S. M., “Simulation of cumulus clouds for investigation of solar radiation transfer processes by Monte Carlo method”, Optika Atm. i Okeana, 7:9 (1994), 1275–1287

[2] Prigarin S. M., Kargin B. A., Oppel U. G., “Random fields of broken clouds and their associated direct solar radiation, scattered transmission, and albedo”, Pure and Applied Optics A, 7:6 (1998), 1389–1402 | DOI

[3] Ogorodnikov V. A., “Testing of stochastic models for series of dry and rainy days”, Proceedings ZapSibNIGMI Goskomgidrometa, 86 (1989), 74–79 (in Russian)

[4] Anisimova A. V., “Numerical modeling of random indicator fields for rainy precipitation”, Proceedings of Young Scientists Conference, ICMMG, Novosibirsk, 1997, 3–15 (in Russian)

[5] Winkler G., Image Analysis, Random Fields and Markov Chain Monte Carlo Methods, Springer, Berlin, 2003 | MR

[6] Ogorodnikov V. A., Prigarin S. M., Numerical Modelling of Random Processes and Fields: Algorithms and Applications, VSP, The Netherlands, Utrecht, 1996 | MR | Zbl

[7] Prigarin S. M., Introduction to Numerical Modeling of Random Processes and Fields, Univ. Press, Novosibirsk, 1999 (in Russian)

[8] Smirnov N. V., Bolshev L. N., Tables for Calculating the Normal Distribution Functions, Izd. Akad. Nauk SSSR, 1962 (in Russian)

[9] Prigarin S. M., Spectral Models of Random Fields in Monte Carlo Methods, VSP, The Netherlands, Utrecht, 2001

[10] Tovstik T. M., “Simulation of homogeneous Gaussian field”, Proceedings of Symposium “Methods of Representation and Apparat. Anal. of Random Processes and Fields”, Leningrad, 1978, 75–77 (in Russian)

[11] Mikhailov G. A., “Numerical construction of a random field with given spectral density”, Dokl. Akad. Nauk SSSR, 238:4 (1978), 793–795 (in Russian) | MR

[12] Brodatz P., Textures: a Photographic Album for Artists and Designers, Dover Publications, New York, 1966