Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2004_7_1_a6, author = {\`E. P. Shurina and M. A. Gelber}, title = {On vector finite element method for solution to electromagnetic problems}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {79--95}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2004_7_1_a6/} }
TY - JOUR AU - È. P. Shurina AU - M. A. Gelber TI - On vector finite element method for solution to electromagnetic problems JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2004 SP - 79 EP - 95 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2004_7_1_a6/ LA - ru ID - SJVM_2004_7_1_a6 ER -
È. P. Shurina; M. A. Gelber. On vector finite element method for solution to electromagnetic problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 1, pp. 79-95. http://geodesic.mathdoc.fr/item/SJVM_2004_7_1_a6/
[1] Ambrosiano J. J., Brandon S. T., Löhner R., DeVore C. R., “Electromagnetics via the Taylor–Galerkin finite element method on unstructed grids”, J. Comput. Phys., 110 (1994), 310–319 | DOI | Zbl
[2] Assous F., Ciarlet P., Segre J., “Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domains: the singular complement method”, J. Comput. Phys., 161 (2000), 218–249 | DOI | MR | Zbl
[3] Bom D., Discrete compactness and Fortin operator for edge elements, Report No AM187, Penn State Univercity, USA, 1999
[4] Bom D., Gastaldi L., Edge finite elements for the approximation of Maxwell resolvent operator, Submitted to RAIRO M2AN, 2001
[5] Bossavit A., Computational electromagnetism. Variational formulations, complementary, edge elements, Academic Press, Casebound, 1997 | MR
[6] Braess D., Finite elements. Theory, fast solvers, and applications in solid mechanics, Cambridge University Press, Cambridge, 2001 | MR | Zbl
[7] Brenner S. C., Scott L. R., The mathematical theory of finite elements methods, Springer-Verlag, New York, 2002 | MR
[8] Brezzi F., Fortin M., Mixed and hybrid finite element methods, Springer-Verlag, New York, 1991 | MR | Zbl
[9] Cioni J.-P., Fezoui L., Issautier D., “High order upwind schemes for solving time-domain Maxwell equations”, La Recherche Aérospatiale, 5 (1994), 319–328 | MR
[10] Demcowicz L., Monk P., “Discrete compactness and the approximation of Maxwell's equations in $R^3$”, Math. Comp., 70 (2000), 507–523 | DOI
[11] Girault V., Raviart P.-A., Finite element methods for Navier–Stokes equations, Springer, New York, 1986 | MR | Zbl
[12] Hiptmair R., “Finite elements in computational electromagnetism”, Acta Numerica, 11 (2002), 237–339 | DOI | MR | Zbl
[13] Igarashi H., “On the property of the curl-curl matrix in finite element analysis with edge elements”, IEEE Trans. on Magn., 37:5 (2001), 3129–3132 | DOI
[14] Iwashita Y., PISCESII: 2.5D RF cavity code with high accuracy, ICAP'98, September 14–18, 1998, Monterey Conference Center, Monterey, California, USA
[15] Kanayama H., Large-scale magnetic field analysis, Annual report of ADVENTURE project ADV-99-1, 1999 | Zbl
[16] Munz C.-D., Schneider R., Voß U., “A finite-volume method for the Maxwell equations in the time domain”, SIAM J. Sci. Comput., 22:2 (1996), 449–475 | DOI | MR
[17] Nédélec J. C., “Mixed finite elements in $R^3$”, Numer. Math., 35 (1980), 315–341 | DOI | MR | Zbl
[18] Nédélec J. C., “A new family of mixed finite elements in $R^3$”, Numer. Math., 50 (1986), 57–81 | DOI | MR | Zbl
[19] Perugia I., “A mixed formulation for 3D magnetostatic problems: theoretical analysis and faceedge finite element approximation”, Numer. Math., 84 (1999), 305–326 | DOI | MR | Zbl
[20] Polstyanko S. V., Lee J.-F., “Two-level hierarchical FEM method for modeling passive microwave devices”, J. Comput. Phys., 140 (1998), 400–420 | DOI | Zbl
[21] Ren Z., Razek A., “Boundary edge elements and spanning tree technique in three-dimensional electromagnetic field computation”, Int. J. Numer. Methods in Eng., 36 (1993), 2877–2893 | DOI | MR
[22] Webb R., “Edge elements and what they can do for you”, IEEE Trans. on Magn., 29:2 (1993), 1460–1465 | DOI
[23] White D. A., “Numerical modeling of optical gradient traps using the vector finite element method”, J. Comput. Phys., 159 (2000), 13–37 | DOI | Zbl
[24] Whitney H., Geometric integration theory, Princeton University Press, Princeton, 1957 | MR | Zbl
[25] Wu J.-Y., Lee R., “The advantages of triangular and tetrahedral edge elements for electromagnetic modeling with the finite-element method”, IEEE Trans. Antennas and Propagation, 45 (1997), 1431–1437 | DOI
[26] Yee K., “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media”, IEEE Trans. Antennas and Propagation, 16 (1966), 302–307
[27] Laevskii Yu. M., Metod konechnykh elementov (osnovy teorii, zadachi), Novosibirskii gos. universitet, Novosibirsk, 1999 | MR
[28] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR
[29] Shurina E. P., Voitovich T. V., “Analiz algoritmov metodov konechnykh elementov i konechnogo ob'ema na neortogonalnykh setkakh pri reshenii uravnenii Nave–Stoksa”, Vychislitelnye tekhnologii / RAN. Sib. otd-nie. — Novosibirsk, 2:4 (1997), 84–104 | MR